2,621 research outputs found

    Alumina fiber strength improvement

    Get PDF
    The effective fiber strength of alumina fibers in an aluminum composite was increased to 173,000 psi. A high temperature heat treatment, combined with a glassy carbon surface coating, was used to prevent degradation and improve fiber tensile strength. Attempts to achieve chemical strengthening of the alumina fiber by chromium oxide and boron oxide coatings proved unsuccessful. A major problem encountered on the program was the low and inconsistent strength of the Dupont Fiber FP used for the investigation

    Spin-dependent transport in a quasiballistic quantum wire

    Full text link
    We describe the transport properties of a 5 μ\mum long one-dimensional (1D) quantum wire. Reduction of conductance plateaux due to the introduction of weakly disorder scattering are observed. In an in-plane magnetic field, we observe spin-splitting of the reduced conductance steps. Our experimental results provide evidence that deviation from conductance quantisation is very small for electrons with spin parallel and is about 1/3 for electrons with spin anti-parallel. Moreover, in a high in-plane magnetic field, a spin-polarised 1D channel shows a plateau-like structure close to 0.3×e2/h0.3 \times e^2/h which strengthens with {\em increasing} temperatures. It is suggested that these results arise from the combination of disorder and the electron-electron interactions in the 1D electron gas.Comment: 4 pages, 5 figures, latex to be published in Phys. Rev. B (15/3/2000

    Sensitivity of the magnetic state of a spin lattice on itinerant electron orbital phase

    Full text link
    Spatially extended localized spins can interact via indirect exchange interaction through Friedel oscillations in the Fermi sea. In arrays of localized spins such interaction can lead to a magnetically ordered phase. Without external magnetic field such a phase is well understood via a "two-impurity" Kondo model. Here we employ non-equilibrium transport spectroscopy to investigate the role of the orbital phase of conduction electrons on the magnetic state of a spin lattice. We show experimentally, that even tiniest perpendicular magnetic field can influence the magnitude of the inter-spin magnetic exchange.Comment: To be published in PhysicaE EP2DS proceedin

    Anomalous spin-dependent behaviour of one-dimensional subbands

    Full text link
    We report a new electron interaction effect in GaAs/AlGaAs quantum wires. Using DC-bias spectroscopy, we show that large and abrupt changes occur to the energies of spin-down (lower energy) states as they populate. The effect is not observed for spin-up energy states. At B=0, interactions have a pronounced effect, in the form of the well-known 0.7 Structure. However, our new results show that interactions strongly affect the energy spectrum at all magnetic fields, from 0 to 16T, not just in the vicinity of the 0.7 Structure.Comment: 4 pages, 2 figure

    Opto-mechanical micro-macro entanglement

    Get PDF
    We propose to create and detect opto-mechanical entanglement by storing one component of an entangled state of light in a mechanical resonator and then retrieving it. Using micro-macro entanglement of light as recently demonstrated experimentally, one can then create opto-mechanical entangled states where the components of the superposition are macroscopically different. We apply this general approach to two-mode squeezed states where one mode has undergone a large displacement. Based on an analysis of the relevant experimental imperfections, the scheme appears feasible with current technology.Comment: 7 pages, 6 figures, to appear in PRL, submission coordinated with Sekatski et al. who reported on similar result

    Possible evidence of a spontaneous spin-polarization in mesoscopic 2D electron systems

    Full text link
    We have experimentally studied the non-equilibrium transport in low-density clean 2D electron systems at mesoscopic length scales. At zero magnetic field (B), a double-peak structure in the non-linear conductance was observed close to the Fermi energy in the localized regime. From the behavior of these peaks at non-zero B, we could associate them to the opposite spin states of the system, indicating a spontaneous spin polarization at B = 0. Detailed temperature and disorder dependence of the structure shows that such a splitting is a ground state property of the low-density 2D systems.Comment: 7 pages, 5 figure
    corecore