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ABSTRACT

The effective fiber strength of alumina fibers in

3 psi. A

an aluminum composite was increased to 173 x 10
high temperature heat treatment, combined with a glassy
carbon surface coating, was used to prevent degradation
and improve fiber tensile strength. Attempts to achieve
chemical strengthening of the alumina fiber by chromium
oxide and boron oxide coatings proved unsuccessful. A
major problem encountered on the program was the low and

inconsistent strength of the DuPont Fiber FP used for the

investigation.
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1.0 INTRODUCTION

The ability to fabricate aluminasaluminum composites has been well
demonstrated in recent work by Fiber Materials, Inc.,l’2 E.I. DuPont de
Nemours and Co.,3 und United Technologies Research Center.4 Qutstanding
features of this composite are good high temperature strength, high speci-
fic modulus, high compressive strength and a projected low-cost ($20/1b).
The tensile strength of the composite is satisfactory for many applications,
however, increasing it would greatly extend the usefulness of the system.
Higher tensile strengths in the composite can only be obtained by increasing
the effective tensile strength of the reinforcing fiber.

The fiber, currently available, that has the best combination of
properties for fabrication of alumina/aluminum is Dupont's Fiber FP. It
has high specific properties, eavironmental stability and compatability
with aluminum alloys. This fiber is continuous, polycrystalline o - A1203
yarn containing 210 filaments. Each filament has a round cross section
with an average diameter of 20 microns. The purity is greater than 99%
alumina and the density is 98% of theoretical. The surface has the typical
"cobblestone" appearance of glass~free polycrystalline alumina. The average
particle grain size in the fiber is 0.5 microns.

The typical filament strengths of Fiber FP measured in single fiber
tests at 0.25" gage Tength are 200-220 x 103 psi. Previous work on aluminum
matrix composites demonstrated maximum effective fiber strengths of 122 x
103 psi based on Rule of Mixtures extrapo]ation.l’2 At present, DuPont
can raise the strength level by 40-45 x 103 psi by coating the fiber with
silica. However, the silica coating generally reacts with moiten metal
and in particular, with Tithium-containing aluminum alloys, so the coated
fiber has not demonstrated significantly increased aluminum composite strength.

The objective of this program was to strengthen DuPont's Fiber FP to a
minimum level of 250 x 103 psi as demonstrated in an aluminum matrix
composite. Investigations were directed in two areas for possible strength-
ening techniques. Plastic deformation of the fiber tows at elevated tempera-
tures was investigated to straighten kinked fibers and heal grain boundary
cracks and voids to improve fiber tow tensile strength. Chemical strength-
ening techniques were also explored to alter the fiber surface and increase



fiber strength. A combination of the two techniques proved the most
effective for increasing fiber strength.

Tensile strength measurements were performed on alumina/aluminum
composite wire prepared using the Ti/B flux infiitration process developed
on previous programs.l’2 The Effective Fiber Strength was then calculated
using the Rule of Mixtures formula on the composite wire property. Evalua-
tion of Bassline Fiber FP strengths were performed with considerable varia-
tion in fiber quality observed.
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2.0 TASK I - METHODS FOR IMPROVING wRAPHITE FIBERS

2.1 SUMMARY OF LITERATURE SEARCH

During Task I of the program, a literature search was conducted into
past research and development of strengthening of aluminum oxide. Informa-
tion gained through the search suggested several possible methods for the
improvement in strength of FP alumina fiber.

In work for the Office of Naval Research, Prewo investigated the -
properties of "as received" FP alumina fibers (See Figure 1)4. His analysis
of tensile test data obtained by testing individual filaments of FP-IV
divides the filaments into three distinct strength populations: Tow, medium
and high strength. The Tow strength fibers were all found to be somewhat
kinked or curved prior to testing. Based on the radii of curvature of the
kinks that were observed, stresses of 300 ksi may have been superimposed
onte the applied tensile stresses during fiber tensile tests. This would
ledd to the premature failure of fiber bundles. The Tow values within this
group are not characteristic of the FP material itself, but instead are due
to the kinked condition.

The filaments in the medium strength range did not have the visual
kinks observed in the Tow group. Fracture in this group is related to the
material structure and defects. Causes of early fracture could have been
surface cracks, internal microcracks and voids, weak grain boundaries, local
stress concentrations induced by crystal anisotropy, and weak second phases.
Prewo was not able to locate the fracture origin due to the granular nature
of the fracture surface.

The highest levels of strength (600 ksi) indicate the strength po-
tential of the AL203 fiber.

A vast amount of work has been performed to investigate the properties
of polycrystalline alumina. Two of the most interesting areas of investigatien
are plastic deformation and chemical strengthening. Knowledge and techniques
developed in these areas have provided the basis for improving the properties
of alumina fibers,

SRR S P



2.1.1 Plastic Deformation in Fine-Grain Alumina

One method commonly used for strengthening fibrous material
is stretching. Straightening of kinked fibers and the healing of grain
boundary cracks and voids are the major structural changes that occur in
polycrystalline fibers. to improve tensile strength. Plastic deformation
must occur during stretching for these changes to take place.

Recently, a number of studies have demonstrated that, under certain
conditions, fine grained polycrystalline aluminum oxide deforms plastically
at relatively high strain rates. During work to determine the effect of
microstructure on the room and elevated temperature mechanical preperties
of A1203 Spriggs, Mitchell and Vasi]os5 found that fine grained alumina
(1 to 2% grain size) exhibited ductile behavior at 1000°C and above. At
1500%C, fine grained alumina specimens bent to the 1imit of the mechanical
testing apparatus without fracturing. The outer fiber strain was approxi-
mately 7% at an estimated strain rate of 3 x 10"6 inches per second. Only
after increasing the strain rate nearly seveh times did the specimen fracture
with 1% outer-fiber strain. The strained specimens did not exhibit grain
boundary parting and cracks, which suggested to Spriggs, Mitchell and Vasilos
that the homogeneous deformation of the alumina grains could have contribured
to the plastic behavior.

Larger grained alumina (10-15u) also exhibited similar plastic behavior;
however, the nonlinear deflection before fracture was greatly reduced. The
high temperature ductile behavior of alumina has been further substantiated
by Passmore, Moschetti and Vasi]os6. They determined that a brittle-to-
ductile transition occurs in a 2-3u grain size alumina at 1350°C. Above 1350°C
the yield stress of polycrystalline alumina decreased following an exponential
relationship. Also, the plastic strain at fracture increases rapidly above
1350°¢C to where, at 1500°Cg the specimens were bent to testing limits without
fracture. Figures 2 and 3 show these relationships. The Tow stress and high
strain at failure indicate considerable plastic deformation may be easily
accomplished at elevated temperatures.

Heuer, Cannon, and Tighe7 furthered the investigations of plastic
deformation in fine-grain alumina. They studied the influence of grain
size (1-10u), strain-rate (2 x 1070 _ 3 & 10'4“/sec) and temperature (1100°-
17OU°C), and attempted to determine the deformation mechanisms. The results
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of their work are consistent with the previous work. In Figure 4, the load
deflection curve shows the change from brittle to ductile behavior in 1-2u
grain size alumina specimens. At 1350°C the specimens deformed to an outer
fiber plastic strain of 1.3 percent at a true strain rate of 6.7 x 10"5
inches/sec without fracturing. With larger grain size materials, higher
temperatures were required to obtain equivalent deformation rates. Trans-
mission electron microscopy of the strained specimens disclosed extensive
evidence of grain boundary sliding and some rhombohedral twinning. The
study indicated that a transition occurs from a diffusional deformation
process to a grain boundary sliding process as the grain size decreases.

2.1.2 Chemical Strengthening of Alumina

Surface flaws lead to premature fracture in well-made polycrystalline
oxide bodies. This statement is supported by alteration in strength properties
from experiments in which the surface perfection of alumina is changed. FP
alumina fibers contain many surface flaws such as voids, cracks and inclusions.
These flaws undoubtedly contribute to premature failure of the fibers. The
use of compressive layers to prestress ceramic bodies has been employed by
the glass industry for many years.

Some of the more common methods for creating compressive surface layers
are surface crystaliization, chill tempering and ion exchange at low tempera-
ture. A high temperature chemical reaction, such as the inward diffusion
of Cr2038 may create a compressive stress on the surface during cooling.
Kirchenerg showed that it is possible to obtain a considerable increase
in strength of polycrystalline alumina by chemically treating the surface.
Inward diffusion of Cr203 and Coxoy into alumina surfaces at 1500-1800°C
was found to give a substantial increase in modulus of rupture value in
polycrystalline alumina and sapphire rodsg. The compressive surface stresses
so formed are thought to prevent propagation of cracks from the surface
defects thus leading to higher strengths on the application of tensile stress.
Experimental techniques, such as the packing of alumina specimens in the
reactive oxides prior to firing, were used by these workers. Such techni-
ques could be readily adapted to the Tow cost processing of alumina fibers.

R AR A UL K TR BN e e
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2.2 PRELIMINARY HOT STRETCHING EXPERIMENTS

Basad on the available information, preliminary research was
conducted in Task I to evaluate hot stretching. A system was set up where
the DuPont Fiber FP could be stretched at temperatures above 1350°C. Figure
5 shows a schematic diagram of the system. The A1203 fiber was processed
under constant strain through the system. It was noted that above 1350°C
the fiber showed ductility. At 1650°C the strain to failure was between
20 and 30% as the fiber was continuously processed. At a temperature of
1800°C the tow sintered together and would not negotiate the take-up devicas.
The load on the fiber tow during the stretching runs was very low and not
measurabie.

The experimental effort discussed above demonstrated that stretching
of the fibers is feasible. The sintering of the tow at the higher tempera-
tures indicates that healing of defects, such as voids, may be achieved by
this process, as diffusion bonding between individual fibers is possible
under these conditions. Process conditions of temperature, residence time
and draw ratio were evaluated to determine their effect on fi@er properties
in Task II. The simplicity of this system would make this a very cost-
effective technique for improving fiber strength. -

2.3 PRELIMINARY CHEMICAL TREATMENTS OF Al 03 FIBER TO IMPROVE STRENGTH

2
The second method evident from the literature for iﬁprovement of

the strength of A1203 is chemical strengthening. Surface diffusion of oxides,

such as Cr203 in the A1203 fiber should establish a compressive layer on the

surface of the fibers. It is well known that compressive surface layers help
to prevent premature failure due to surface flaws 1in polycrystalline bodies.

FP alumina fibers contain many surface flaws and the chemical strengthening

method may significantly improve the strength of the material. -

A preliminary experiment was conducted in Task I to evaluate a technique
for application of Cr203’to the surface of A1203 fibers. The equipment
shown in Figure 5 was modified with a dip tank for the application of chromic
acid to the fiber surface. A 10% weight solution of chromium trioxide was
used; this was reduced at 1000%C in air to Cr203 on the fiber surface. The
tow was then processed at 1650°C where the coating was diffused into A1203
fiber. Color changes clearly showed the state of the coating at each step

10
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of the process. The red-orange chromic acid solut -+ was converted to a
green solid during the reduction at 1000°C. Upon firing to 1650°C, the
color of the fiber changed to a light pink, indicating that the Cr203 had
diffused into A1203. This simple experiment demonstrated that such techni-
ques are feasible and at a very low cost on a large scale. Further evalua-
tion of this process was conducted in Task II.

2.4 BASELINE EFFECTIVE FIBER STRENGTH

To accurately measure any improvements in fiber strengths, a
baseline fiber strength was determined on Fiber FP as received from the
manufacturer. Samples of alumina fiber were infiltrated with aluminum by
the process described below. Tensile properties of the composite wire were
determined using standard test methods (See Appendix I). Calculations of
the effective fiber strength from the composite wire was done to evaluate
baseline fiber performance.

2.4.1 Test Specimen Fabrication

The Ti/B infiltration process developed for the fabrication of
metal composite material was used to fabricate tensile test specimens.
Modification of the process for alumina fibers was accomplished on NASA
Contract No's. NAS3-21013 and NAS3-21371. )

The coating process involves the chemical vapor deposition of a titanium/
boron layer on the alumina fibers by the reduction of titanium tetrachloride
(T1C14) and boron trichloride (BC13) with zinc vapor. The Ti/B coated yarn~
is then pulled through an in-lTine aluminum alloy melt to yield a composite t
wire. The infiltration process is shown schematically in Figure 6. Aluminum :
alloy A201 was used as the matrix material for all composite prepared on :
this program.

2.4.2 Effective Fiber Strength Determination

The alumina/aluminum composite wire properties are shown in
Table 1 for the as received Fiber FP. From this data the effective fiber
strength (EFS) can be determined from the Rule of Mixtures as follows:

Composite Strength - (Matrix volume fraction) x (Matrix Strength)

EFS =
Fiber Volume Fraction

12 !
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TABLE I. FIBER FP/A201 - BASELINE COMPOSITE PROPERTIES

Ultimate Tensile Strength

Tensile Modulus

Strain to Failure

Composite Wire Cross-Sectional Area
Fiber FP Cross-Sectional Area

Volume of Fiber

14

30.9

17.4

2.91

8.79

X 10% psi
X 106 psi

0.21%

X 10"4 inz

x 1070 in?

22.5%



A201 aluminum 1is generally assumed to have a strength of 10 x 103 psi
as a matrix in composites. Using this value, with the properties in Table
I, the effective fiber strength is calculated as follows;

s % 103 - 3
£Fs = 30.8 x 10 (067;22 x (10 X 10°) . 105  10% psi

The actual contribution of the matrix to the composite strength is
difficult to evaluate adding some uncertainty to the Rule of Mixtures
calculations. A useful property to evaluate is the effective fiber strength,
assuming the matrix does not contribute at all to the strength of the com-
posite. The value thus determined is the maximum contribution of the fiber
possible in the composite. It can be calculated as follows:

(EFS) maximum = composite strength

volume fraction fiber
30.9 x 103
.225

137 x 103 psi

From these values it is apparent that the baseline aluminum oxide fiber
is degraded when infiltrated with aluminum, since the same baseline fiber
tested in an epoxy matrix demonstrated a tensile strength of 176 x 103 psi.
Typical Fiber FP/aluminum composite wire, as produced on a previous program,
had an average tensile strength of 39.7 x 103 psi. The effective fiber

strength calculated from the ROM of that fiber is 122 x 10° psi.

To isolate the cause of strength degradation between the Ti/B flux
and the aluminum alloys, fiber was tested after the flux application and
prior to infiltration. Alumina fiber, so treated and tested in an epoxy
matrix, had a tensile strength of 170.5 ksi. This slight reduction in
tensile strength is not indicative of chemical attack but only that due
to the handling of the fiber tow or due to fiber variation. It is there-
fore concluded that the major cause of fiber degradation is the attack of
the aluminum alloy on the fiber, which has also been reported earlier by
other workers.4

15
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2.4.3 Evaluation of Fiber FP Consistency

During preliminary experimental trials, considerable variation
in properties was observed on fiber samples. Therefore, an evaluation of
the consistency of the "as-received" Fiber FP was conducted. A one-pound
spool of Fiber FP was sampled at 1000 foot intervals for mechanical property
testing in epoxy matrix., Also, samples from all spools of fiber on hand
were tested for mechanical properties. The results of these tests are shown
in Tables 2 and 3.

The average tensile strength of spool P284-14 varied from 125.6 x 103
psi to 181.0 X 103 psi when sampled at eight points on the roll. Most of
the samples demonstrated tensile strengths well below the manufacturer's
specifications. The highest strength observed on any single 10" test
sample from spool P284-14 was 193.0 x 103 psi. No significant difference
in strength was observed on samples taken from different spools of Fiber
FP. This indicates that the properties, as measured on spool P284-14, are
probably typicai of all spools.

A further study was conducted to try to determine if the inconsistencies
of the fibers were controlled by the length of sample or by variation of
fibers within the tow. A sample of fiber was tested at various gage lengths
from 10" to %". The results of these tests are shown in Table 4. It is
important to ncute that the sample used to generate the data in Table 4 was
taken immediately before sample P284-14H in Table 2. The latter sample
demonstrated a strength of 181 x 103 psi while the former 143.2 x 103 psi
and both were tested on a 10" gage length. These samples were less than
100 feet apart on the same spool. The properties shown in Table 4 show
scatter in the variation of strength with gage length similar to that
observed on the 10" gage length samples in Table 2. The average strengths
do appear to be higher with shorter gage lengths and the variation within
the samples generally decreased with shorter gage lengths. In no case do
the average values reach the 200 x 103 psi minimum strength advertised by
the manufacturer. This indicates that there is considerable inconsistency
in the 200 fibers of the tow and along the Tength within the spool. It
should be pointed out, however, that the manufacturer values for fiber
strength were determined by single fiber testing, whereas bundle tests
were conducted on the present program,

16
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A spool of fiber was chosen from the results in Table 3 to be used
on the final optimization runs of this program. Spool P284~13 was consumed
in the preliminary experiments and spool P284-14 showed excessive variation
when tested (See Table 2). Spool P284-19 was chosen as one of the strongest
and also tested along its length at 500 feet intervals. The fiber between
the test samples was used in the strength improvement studies. The tensile
strength of these test samples are shown in Table 5. There is significant
scatter throughout the roll, however the latter part of the roll (Samples
P284-19 E-L) has the most consistenly high strengths found. Fiber from
this portion of the roll was used for experiments 035-43B through 035-43 E.

20
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3.0 TASK IT - ALUMINUM FIBER STRENGTH IMPROVEMENT STUDIES

3.1 HOT STRETCHING OF ALUMINA FIBERS

The hot stretching process, described in Section 2.2 was optimized
for temperature, residence time, and amount of stretching. Preliminary
fiber samples were tested in an epoxy matrix for determination of mechani-
cal properties. A summary of these experimental results is presented in
Table 6.

It was noted that above 1350°C the fiber showed ductility. At 1650°¢C
the strain to failure was between 20 and 30% as the fiber was continuously
processed. At a temperature of 1800°C the tow sintered together and would
not negotiate the take-up devices. The load on the fiber tow during the
stretching runs was very low and not measurable.

The decrease in U.T.S. of samples processed at 1650°C, with long
residence times (Sample 035-11#9, 10) may have been caused by excessive
grain growth in the A1203. This 1is supported by evidence that at shorter
residence time the properties of the material improve above those of the
as-received fiber. Also, a significant increase in the modulus (+12%) was
observed on these samples.

Attempts were made to aluminum infiltrate fiber prepared under condi-
tions similar to sample 035-18#3. The fiber exhibited high tensile strength
(203 x 103 psi) when tested on a 10-inch gage length but the dry fiber tow
would not support its own weight over the five foot length required in the
infiltration process. This indicates that some fiber breakage occured
during the stretching operation; probably at points where defects already

existed in the individual filaments.

Even though the average filament strength was increased by stretching,
filament breakage prevented using such stretched fiber for continuous
aluminum infiltration. Further experimentation showed that high temperature
heat treatment with minimum applied load and no stretching was possible
without significant filament breakage. Fiber so prepared (Sample 035-34-B,
Table 6) still demonstrated high tensile strength on 10-inch gage length
and would tolerate the handling of long sections of yarn required for
infiltration process.
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It was at this point in the experimental investigation that the problem
of consistency in the original Fiber FP became apparent. A second sample of
fiber, prepared under identical conditions to sample 035-34-B (U.T.S. -204 x
103 psi) had a tensile strength of orly 150 x 103 psi in epoxy. The two fiber
samples were prepared from different spools of Fiber FP. Spool P284-17 was
consumed in the preliminary investigation of hot stretching (including sample
035-34-B) and was not available for the evaluationof fiber consistency (See
Section 2.4.3). It appears that this spool had relatively high tensile

strengths compared with Spool P284-15, which was used to produce sample 035-
40-B.

Fiber prepared by the high temperature heat treatment did show excellent
retention of strength when infiltrated with aluminum. Sample 035-40-B demon-
strated an effective fiber strength (EFS) of 144 x 103 psi in the aluminum
composite. This fiber, when tested in an epoxy matrix, had & strength of
150 x 103 psi. This represents a 96% retention of epoxy strand test strength
into the aluminum matrix.

3.2 CHEMICAL STRENGTHENING STUDIES

3.2.1 Chromium Oxide Coatings

The process developed in Task I (See Section 2.3) was evaluated for
fiber strength. improvement in Task II. Alumina fiber was coated with a chromic
acid solution and heat treated at 1000°C to produce a Crzo3 coating on the fiber
surface. Further heat treatment of the fiber was carried out at 1420°C and
1550°C to allow for diffusion of the coating into the fiber. Fiber samples were
generated for infiltration with aluminum and determination of effective fiber
strength.

Considerable difficulty was experienced in the aluminum infiltration of the
samples prepared with the Cr203 coatings. Handling characteristics of the
fiber were very poor and accumulation of broken filaments, "fuzz", caused *ow
breakage during the infiltration process on several of the samples. The infil-
tration chemistry was also altered by the fiber treatments, requiring adjust-
ments to infiltration conditions to achieve wetting. Continuous infiltration
was not achieved on any sample. Treatment conditions for the samples are
listed in Table 7 with results of the aluminum infiltration trials.
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Table 8 1ists the properties of the small amount FP/Aluminum composite
wire, that was obtained from the Cr203 coated fiber. The sample labelled
'Baseline" gives the data determined on the initial runs of this program.

A sample of untreated Fiber FP (fiber from the spool used in the Cry04 coating
studies) was infiltrated immediately prior to the Cr203 coated samples and is
labelled "Control" in Table 8. Variation in the calculated EFS between the
"Baseline" and "Control" samples (103 x 103 psi vs. 90.5 x 103 psi) can be
accounted for by variation of as-received Fiber FP properties, variation in
interface reactions between fiber and matrix due to infiltration canditions,
and statistical sampling errors in the two batches of composite wire.

Improvements in the EFS were observed for the Cr,0, coated fiber samples.
Fiber heat treated at 1420°C shows a 10% improvement over the EFS of the
“Control" sample. At 1550°C, a 25% improvement in EFS was observed over the
“Control” sample. The higher temperature sample shows a 10% increase in EFS
above the "Baseline" fiber property. No further evaluation of this process
was conducted due to the small strength improvement and the poor infiltration
characteristics.

3.2.2 Béron Oxide Coatings

fvaluation of Tow temperature glassy surface coatings for improv-
ing fiber strengths was conducted during Task II. Low temperature glasses
were evaluated to heal surface defects in A1203 fiber while avoiding undesir-
able grain growth that occurred at high temperatures. Compatibility with
aluminum was also a consideration in the choice of coating materials.

Coatings were applied to Fiber FP from a boric acid solution and reduced
at 1000°C under N2 to form 8203 glass. Results of fiber tested in an epoxy
matrix showed severe fiber degradation by this process. Excessive reactions
between the A1203 and 8203 may be the cause of the reduction in tensile
strength observed. Baseline Fiber FP tensile strength, in epoxy, measured 176
X 103 psis 8203 coated fiber FP had a tensile strength of 107 x 103 psi.
ATuminum composite samples were not prepared with this fiber.
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3.2.3 Glassy Carbon Coatings

Another low temperature glass evaluated as a coating material
was glassy carbon. Coatings were applied to Fiber FP with good success by
decomposition of acetylene at 1000°C under nitrogen. The glassy nature of
the coating material was evident by deposits within the coating chamber and
the improved texture of the fiber. Figure 7 shows a schematic of the coat-
ing process.

Initial fiber samples coated with glassy carbon demonstrated an epoxy
tensile strength of 250 x 103 psi (Sample 035-32-d). A second batch of
fiber was prepared under similar conditions for infiltration with aluminum
(Sample 035-38-C). The fiber used for the second batch was from a different
spool and demonstrated a tensile strength of 212 X 103 psi in epoxy. The
effective fiber strength of this fiber in aluminum was 155 X 103 psi.

Glassy carbon was also evaluated as a coating in conjunction with high
temperature heat treatment at 1650°C. The uncoated heat treated samples,
wheri infiltrated with aluminum, yieided an effective fiber strength of
144 x 10° psi.

A batch of heat treated fiber from sample 035-40-B was further processed

by applying a glassy carbon coating from acetylene at 1000°C. This sample

(035-40-D) demonstrated an effective fiber strength of 173 X 103 psi in an
aluminum composite, a significant improvement over the 103 X 103 psi base-
Tine effective fiber strength. A summary of these experiments is listed in

Table 9.

It is important to note that the high effective fiber strengths were
achieved from a spool of fiber that demonstrated relatively low strength in

epoxy tests. Samples 035-40-B and 035-40-D showed greater than 90% reten-

tion of fiber strength in the aluminum composite.

From the data shown in Table 9 the combination of high temperature
heat treatment with glassy carbon coating provided the best effective fiber
strength. Further optimization of the glassy carbon coating temperature
was performed both on the as-received Fiber FP and on the high temperature
heat treated fiber. Results from these trials are shown in Table 10. The
optimum temperature for coating fibers was found to be 1000°C, this applied
to both the heat treated and as-received fiber samples.
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3.3 OPTIMUM TREATMENT CONDITIONS

The optimum conditions found on this program for the treatment
of alumina fibers are listed in Table 11. A high temperature heat treat-
ment, followed by an application of glassy carbon to the fiber surface,
was found to be the most effective for improving the effective fiber strength.

Composite properties from fiber produced by this process are also
listed in Table 11. The effective fiber strength of 173 x 103 psi is a
significant improvement above the baseline effective fiber strength of
103 x 103 psi. Correspondingly, the tensile strength of 58.8 x 103 psi
is a significant improvement for a 30 volume % alumina/aluminum composite
over previous work.l’2

These conditions were chosen for the treatment of a one-pound lot
of Fiber FP. The improved alumina fiber was delivered to NASA per contract
requirements.
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TABLE 11

OPTIMUM ALUMINA FIBER TREATMENT

High Temperature Heat Treatment Conditions

Temperature: 1650°¢
Residence Time: 0.9 sec
Atmosphere: Argon

Glassy Carbon Coating Conditions

Temperature: 1000°c
Residence Time: 60 sec
Atmosphere: N2/02H2

Aluminum Composite Properties (Sample 035-~40-~D)

Ultimate Tensile Strength

Tensile Modulus

Strain to Failure

Composite Wire Cross~-Sectional Area
Fiber Cross-Sectional Area

Volume Fraction Fiber

Effective Fiber strength

33

58.8 x lO3 psi

13.8 x lO6 psi

0.53%

2.98 x 10~4 in?

8.83 x 1070 in?
0.30

173 x 10° psi
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4.0 DISCUSSION OF TECHNICAL RESULTS

One of the major problems encountered on this program was the consi-
stency of the as-received Fiber FP, Variations of over 50% in tensile
strength of the fiber was observed. Fiber samples less than 100 feet apart
had a strength variation of over 25%. This variation prevented an accurate
determination of the actual strength improvements due to the treatment
processes.

Evaluation of the strengthening process was done by maximizing the
effective fiber strength with a careful eye toward the properties of the
starting fiber. The optimum conditions chosen in Table 11 were picked for
the exceedingly high effective fiber strength (173 x 103 psi) produced from
fiber so treated. This strength level is a considerable improvement over
the baseline EFS of 103 x 103 psi and is greater than can be accounted for
by fiber variation alone. Previous work has shown maximum effective fiber
strengths of 122 x 103 psi.l’2

Observations made during the treatment processes demonstrated that the
high temperature heat treatment was effective in improving fiber quality if
the residence time was minimized. Long residence time probably ailowed
excessive gain growth to occur, causing a reduction in tensile strength.
The improvement in effective fiber strength by heat treatment may be due to
a reduction in surface flaws which can act as points of attack by molten
aluminum,

The chromium oxide coating studies were effective in producing small
strength improvements but they may have been due to the heat treatment process.
Significant strength improvement was not observed for samples where the ceating
was allowed to diffuse into the fiber. It was hoped that this would establish
a surface compressive layer strengthening the filaments, however, the time
and temperature required for significant diffusion were similar to those that
caused strength loss upon heat treatments alone. The attainment of the
desired chromium oxide containing surface layer may have been offset by the
undesired grain growth. The adverse effect of the chromium oxide on the
infiltration characteristics also lTimited the usefulness of this process.
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The glassy carbon coating was applied to the fiber at temperatures
below those at which significant grain growth occurred, and demonstrated
an improvement in tensile strength. One possible mechanism for this im-
provement is the healing of surface flaws by the glassy nature of the
coating. The carbon coating also improved the stability of the fibers in
aluminum and improved the wetting characteristics of the fibers in the
aluminum infiltration process.
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5.0 CONCLUSIONS

1. One of the major problems 1imiting the utilization of DuPont's

Fiber FP in alumina/aluminun composites is the low and inconsistent
Fiber Strength.

2. High temperature heat treatment at 1650°¢C significantly
reduced the degradation of alumina fibers during infiltration with
aluminum,

3. Glassy carbon coatings, applied to the surface of alumina
fibers, can increase their tensile strength.

4, A combination of high temperature heat treatment and glassy
carbon surface coating of alumina fiber significantly improves the
effective fiber strength of alumina/aluminum composites.

5. The glassy carbon surface coating developed for strength
improvement also improves fiber handling and aluminum wetting
characteristics.

6. Attempts to achieve chemical strengthening by the use of
Chromium oxide and Boron oxide coatings were unsuccessful.
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6.0 RECOMMENDATIONS

1. Before further work is conducted in strengthening Fiber FP, a
detailed evaluation of fiber characteristics should be performed. This
investigation is required to obtain a firm data base as to the true
properties of Fiber FP and to determine the primary cause of fiber failure.

2. Once detailed evaluation of Fiber FP is completed, further
investigations are recommended to enhance fiber strength by the heat
treatment and glassy carbon coating techniques developed cn this program.
Processing conditions need to be further optimized.

3. A more detailed study of composite fabrication techniques
should be conducted. Direct infiltration by casting of shaped fiber
preforms using the strengthened glassy carbon coated FP fibers should
be investigated. The improved wettability observed in the Ti/B flux
process indicates that direct casting may be feasible with these fibers.

4. Aluminum composite properties should be more completely evalua-
ted for a fuller understanding of material characteristics. A quantity
of treated fiber should be prepared at various conditions to produce
sufficient composite wire for fabrication of bulk composite shapes of
bars and panels. Mechanical testing is recommended to determine the
off-axis properties of the composite system.
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8.0 APPENDIX

STANDARD TEST METHOD
FOR
DETERMINING TENSILE PROPERTIES
OF

ALUMINA/ALUMINUM COMPOSITES
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8.1 SCOPE

This method has been developed to insure acquisition of accurate
repeatable tensile properties of fiber reinforced materials when tested
under well-defined conditions of pretreatment, temperature, humidity, and

testing rates. This method complies in substance with ASTM Test Method
D638.

8.2 DEFINITION OF TERMS

Definition of terms applying to this method are listed in the
following paragraphs.

Tensile Strength (nominal) is the maximum tensile Toad per unit area
of the minimum original cross~-section within the gage length, carried by
the test specimen at any time during the test sequence. It is expressed
in force per unit area, usually pounds per square inch,

Gage Lengtn is the original length of the portion of the specimen
over which strain is determined.

Strain is the ratio of the change in length of the gage segtion to
the original gage Tength and is usually expressed in inches per inch.

Percent Total Strain is the total change in length produced in the
gage section of the test specimen by the tensile load applied during the
test sequence divided by the initial gage 1ength and multipiied by 100.

Strain at Maximum Stress is the strain seen by the gage length of
the test specimen at the highest value of load achieved.

Tensile Stress-Strain Curve is a diagram in which the values of
tensile stress are plotted as ordinates and corresponding values of tensile
strain as abscissas.

Offset Yield Stress is the stress at which the strain exceeds by a
specified amount (the offset) an extension of the initial proportional
portion of the stress-strain diagram. It is expressed in force per unit
area, usually pounds per square inch.
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Proportional Limit is the point on the stress-strain diagram at
which the stress-strain ratjo ceases to maintain a linear relationship.

Modulus of Elasticity is the ratio of stress (nominal) to correspond-
ing strain below the proportional 1imit of the material. It is expressed
in force per unit area, usually pounds per square inch.

Stress Rate is the change in tensile stress per unit time. It 7s
expressed in force per unit area per unit time, usually pounds per square
inch per minute.

Strain Rate is the change in tensile strain per unit time. It is
usually expressed as inches per minute.

8.3 SIGNIFICANCE

This method is designed to produce tensile properties data
with the accuracy and detail required to characterize the material and
permit sound engineering decisions concerning its applications. Tensile
properties may vary with specimen geometry, preparation, area from which
test specimen is taken, changes in the testing environments, and changes
in testing rates. '

8.4 APPARATUS

Testing Machine - A testing machine with precisely controlled
constant crosshead velocity. The crosshead drive system shall be insensitive
to loading and shall be capable of maintaining a constant velocity throughout
the entire test sequence.

Grips - Grips used for restraining the test specimen during the test
sequence shall be self aligning as the specimen is stressed to insure axial
alignment of the specimen and loading axis of the testing machine. Finely
serrated grips (25 teeth/inch) should be used on flat surface tensile speci-
mens with highly polished shoulder bearing grips being used on cylindrical
samples.

Load Weighing System - The load weighing system shall be capable of
indicating the total tensile load carried by the specimen during the test
sequence. The system shall be free from inertial lag at the specified rate
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of testing and shall indicate the load with an accuracy of + 0.5% of the
indicated load or better, The accuracy of the load weighing system shall
be verified in accordance with ASTM Methods E4, "Verification of Testing
Machines".

Strain Sensor =~ A suitable strain sensor shall be used on all test
specimens to continuously determine the change in length of the gage section
during the entire test sequence. The instrument shall be capable of trans-
mitting a signal for autographic recording of strain during the test sequence.
The instrument shall be free from inertial lag at the specified testing rate
and be accurate to + 0.25% of its calibrated range or better.

Recorder - A recording system shall be used that can record stress
(load) and strain simultanecusly during the test sequence in either a
stress vs. time or in a stress-strain-time format, and is capable of main-
taining the same level of accuracy as the source signals.

Environmental Enclosure - The environmental enclosure shall be able to
provide the capabilities required in the materials test specifications without
interfering with the operation of the testing machine or diagnostic equipment.

Micrometers - Micrometers reading to at Teast 0.001" + 000 shall be
used to measure width, thickness, diameter, and length of test specimen
before testing.

8.5 TEST SPECIMENS

Test specimens shall be designed to insure plane strain in the

cross-section of the gage length. Specimens requiring machining shall be
prepared machining (surface grinding primarily) with the depth of cut being
such that surface fieating of the material is heid to an absolute minimum.
A11 surfaces of the test specimen shall be free from visible flaws and there
shall be no undercutting at the transition from gage section to blend radius.
Composite yarn or wire specimens shall have fiberglass loading spreading tabs
bonded to each end at the desired test length.

8.6 NUMBER OF TEST SPECIMENS

At least three specimens shall be tested in each direction of
interest.
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8.7 SPEED OF TESTING

Speed of testing shall be specified as ejther a constant stress
rate of a constant strain rate during the elastic portion of the sStress-
strain curve,

8.8 PROCEDURE

Measure the width and thickness of specimens with rectangular
cross-sections or the diameter of cylindrical specimens to the nearest
.001" at several points along the gage length. Install test specimen in
the grips taking care to align the specimen and grip assembly on the central
axis of the machine, Maximum strain gradient across the specimen shall be
less than 5% of the total strain at failure. Install the strain sensor on
specimen (unless bonded strain gages are used). Set crosshead velocity to
give the specified stress or strain rate. Prepare recorder for recording
test sequence. Start testing machine and record test data.

8.9 CALCULATIONS

Tensile Strength - Calculate the tensile strength by dividing the
maximum load in pounds by the original minimum cross-sectional area of the
test specimen. Express the results in pounds per square inch (psi) and
report the result to three significant figures.

Percent Total Strain ~ Calculate the percent total strain by counting.
the number of blocks of chart displacement and multiplying by the block
value in inches per inch times 100.

Modulus of Elasticity - Calculate the modulus of elasticity by
extending the initial linear portion of the stress-strain (load-strain)
curve and dividing the change in stress by the corresponding change in

strain between two points on the extended line (preferably zero and full
scale). The modulus values shall be calculated using the initial cross-

sectional area and expressed in pounds per square inch (three significant
figures).

Average (Mean) Value (X)- Calculate the average value of each parameter
by summing all value of that parameter and dividing by the number of values.
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Estimate of the Standard Deviation(s) - Calculate the estimate of
the standard deviation of each parameter using the following formula:

s = NEXZ - (EX)?
N(N-1)
where:
S = Estimate of the standard deviation
X = Value of a single observation
N = Number of observations

Coefficient of Variance (CV) - Calculate the coefficient of variance
by dividing the estimated standard deviation{s) by the mean X and multiplying
by 100. Express value as a percentage.

Range (R) - The range in the spread of the data used in a statistical
calculation,

8.10 REPORT

The report should include the following:

Complete identification of the material tested, including
type, sources serial number, form, principal dimensions, and prior history;

Method of preparing test specimen;

Type of test specimen and dimensions;

Orientation of test specimen;

Conditioning procedure followed;

Testing environment;

Laboratory environment;

Number of specimens tested;

Speed of testing;

Ultimate tensile stress and yield stress (if applicable);

Modulus of elasticity;

Percent total strain to failure;

Proportional Timit;

Statistics outlined in Section 9;

Test date; and

Operator's name.
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