17,942 research outputs found

    Fluid-solid transition in hard hyper-sphere systems

    Full text link
    In this work we present a numerical study, based on molecular dynamics simulations, to estimate the freezing point of hard spheres and hypersphere systems in dimension D = 4, 5, 6 and 7. We have studied the changes of the Radial Distribution Function (RDF) as a function of density in the coexistence region. We started our simulations from crystalline states with densities above the melting point, and moved down to densities in the liquid state below the freezing point. For all the examined dimensions (including D = 3) it was observed that the height of the first minimum of the RDF changes in an almost continuous way around the freezing density and resembles a second order phase transition. With these results we propose a numerical method to estimate the freezing point as a function of the dimension D using numerical fits and semiempirical approaches. We find that the estimated values of the freezing point are very close to previously reported values from simulations and theoretical approaches up to D = 6 reinforcing the validity of the proposed method. This was also applied to numerical simulations for D = 7 giving new estimations of the freezing point for this dimensionality.Comment: 13 pages, 10 figure

    Potential Identification of sublimation-driven downslope mass movement on Mercury

    Get PDF
    We have identified a further example of mass movement, in addition to the previously identified example in the pyroclastic vent NE of Rachmaninoff. Both examples show evidence of hollow sublimation being a cause of the mass movements

    1:3M Geological Mapping of the Derain (H-10) Quadrangle of Mercury

    Get PDF
    We are making a high resolution geological map of the Derain quadrangle of Mercury. This is part of a coordinated project to create a global set of geological maps for BepiColombo

    Seed Yield Prediction Models of Four Common Moist-Soil Plant Species in Texas

    Get PDF
    Seed production by moist-soil plant species often varies within and among managed wetlands and on larger landscapes. Quantifying seed production of moist-soil plants can be used to evaluate wetland management strategies and estimate wetland energetic carrying capacity, specifically for waterfowl. In the past, direct estimation techniques were used, but due to excessive personnel and time costs, other indirect methods have been developed. Because indirect seed yield models do not exist for moist-soil plant species in east-central or coastal Texas, we developed direct and indirect methods to model seed production on regional managed wetlands. In September 2004 and 2005, we collected Echinochloa crusgalli (barnyard grass), E. walterii (wild millet), E. colona (jungle rice), and Oryza sativa (cultivated rice) for phytomorphological measurements and seed yield modeling. Initial simple linear and point of origin regression analyses demonstrate strong relationships (P \u3c 0.001) among phytomorphological and dot grid methods in predicting seed production for all four species. These models should help regional wetland managers evaluate moist-soil management success and create models for seed production for other moist-soil plants in this region

    Risk factors for house-entry by malaria vectors in a rural town and satellite villages in The Gambia.

    Get PDF
    Background: In the pre-intervention year of a randomized controlled trial investigating the protective effects of house screening against malaria-transmitting vectors, a multi-factorial risk factor analysis study was used to identify factors that influence mosquito house entry. Methods: Mosquitoes were sampled using CDC light traps in 976 houses, each on one night, in Farafenni town and surrounding villages during the malaria-transmission season in The Gambia. Catches from individual houses were both (a) left unadjusted and (b) adjusted relative to the number of mosquitoes caught in four sentinel houses that were operated nightly throughout the period, to allow for night-to-night variation. Houses were characterized by location, architecture, human occupancy and their mosquito control activities, and the number and type of domestic animals within the compound. Results: 106,536 mosquitoes were caught, of which 55% were Anopheles gambiae sensu lato, the major malaria vectors in the region. There were seven fold higher numbers of An. gambiae s.l. in the villages (geometric mean per trap night = 43.7, 95% confidence intervals, CIs = 39.5–48.4) than in Farafenni town (6.3, 5.7–7.2) and significant variation between residential blocks (p < 0.001). A negative binomial multivariate model performed equally well using unadjusted or adjusted trap data. Using the unadjusted data the presence of nuisance mosquitoes was reduced if the house was located in the town (odds ratio, OR = 0.11, 95% CIs = 0.09–0.13), the eaves were closed (OR = 0.71, 0.60–0.85), a horse was tethered near the house (OR = 0.77, 0.73–0.82), and churai, a local incense, was burned in the room at night (OR = 0.56, 0.47–0.66). Mosquito numbers increased per additional person in the house (OR = 1.04, 1.02–1.06) or trapping room (OR = 1.19, 1.13–1.25) and when the walls were made of mud blocks compared with concrete (OR = 1.44, 1.10–1.87). Conclusion: This study demonstrates that the risk of malaria transmission is greatest in rural areas, where large numbers of people sleep in houses made of mud blocks, where the eaves are open, horses are not tethered nearby and where churai is not burnt at night. These factors need to be considered in the design and analysis of intervention studies designed to reduce malaria transmission in The Gambia and other parts of sub-Saharan Africa

    Entropy and Entanglement in Quantum Ground States

    Full text link
    We consider the relationship between correlations and entanglement in gapped quantum systems, with application to matrix product state representations. We prove that there exist gapped one-dimensional local Hamiltonians such that the entropy is exponentially large in the correlation length, and we present strong evidence supporting a conjecture that there exist such systems with arbitrarily large entropy. However, we then show that, under an assumption on the density of states which is believed to be satisfied by many physical systems such as the fractional quantum Hall effect, that an efficient matrix product state representation of the ground state exists in any dimension. Finally, we comment on the implications for numerical simulation.Comment: 7 pages, no figure

    Fatherhood in males with cystic fibrosis: modality of conception and impact on clinical status

    Get PDF

    Study of process technology for GaAlAs/GaAs heteroface solar cells

    Get PDF
    Two processes were considered: the infinite melt process and the finite melt process. The only technique that is developed to the point that 10,000 cells could be produced in one year is the infinite melt liquid phase epitaxy process. The lowest cost per cell was achieved with the advanced metal organic chemical vapor deposition process. Molecular beam epitaxy was limited by the slow growth rate. The lowest cost, an 18 percent efficient cell at air mass zero, was approximately $70 per watt
    • …
    corecore