532 research outputs found

    Evaluating the predicted reliability of mechatronic systems: state of the art

    Get PDF
    Reliability analysis of mechatronic systems is a recent field and a dynamic branch of research. It is addressed whenever there is a need for reliable, available, and safe systems. The studies of reliability must be conducted earlier during the design phase, in order to reduce costs and the number of prototypes required in the validation of the system. The process of reliability is then deployed throughout the full cycle of development. This process is broken down into three major phases: the predictive reliability, the experimental reliability and operational reliability. The main objective of this article is a kind of portrayal of the various studies enabling a noteworthy mastery of the predictive reliability. The weak points are highlighted. Presenting an overview of all the quantitative and qualitative approaches concerned with modelling and evaluating the prediction of reliability is so important for future reliability studies and for academic research to come up with new methods and tools. The mechatronic system is a hybrid system, it is dynamic, reconfigurable, and interactive. The modeling carried out of reliability prediction must take into account these criteria. Several methodologies have been developed in this track of research. In this regard, the aforementioned methodologies will be analytically sketched in this paper.Comment: 13 page, Mechanical Engineering: An International Journal (MEIJ), Vol. 3, No. 2, May 201

    Learning and Forgetting with Local Information of New Objects

    Get PDF
    The performance of supervised learners depends on the presence of a relatively large labeled sample. This paper proposes an automatic ongoing learning system, which is able to incorporate new knowledge from the experience obtained when classifying new objects and correspondingly, to improve the efficiency of the system. We employ a stochastic rule for classifying and editing, along with a condensing algorithm based on local density to forget superfluous data (and control the sample size). The effectiveness of the algorithm is experimentally evaluated using a number of data sets taken from the UCI Machine Learning Database Repository

    Recycling CO2from flue gas for CaCO3nanoparticles production as cement filler: A Life Cycle Assessment

    Get PDF
    CaCO3 nanoparticles as filler have received considerable attention for the mechanical improvement that they provide to cements. However, their life-cycle impact on the environment remains almost unexplored, even if the cement industry is considered one of the largest CO2 emitters. In this perspective, this research work assessed a novel method for using CO2 from cement flue gases to produce nanoCaCO3 as cement filler within the cradle to cradle thinking. For this purpose, two routes of CO2 capture were assessed followed by the study of the synthesis of CaCO3 through a mineral carbonation. Three scenarios for the synthesis of CaCO3 nanoparticles were assessed targeting the use of waste or by-products as raw materials and recirculation of them to reduce any kind of emission. The three scenarios were evaluated by means of the Life Cycle Assessment methodology. Once the best considered route for nanoCaCO3 production was determined, this research work examined the environmental effect of including 2 wt% of CaCO3 nanoparticles into the cement. Closing the loop follows a circular economy approach since the CO2 is captured within the same cement factory. The results were compared with conventional Portland cement. Regarding nanoCaCO3 results, the scenario with simultaneous production of NH4Cl, and using as calcium source CaCl2 deriving from the soda ash Solvay process, proved to be the best option. Moreover, when cement was filled with 2 wt% of this nanoCaCO3, the benefit in terms of emission reductions in the Climate Change category was higher than 60 % compared to the conventional Portland cement.This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No. 768583- RECODE project (Recycling carbon dioxide in the cement industry to produce added-value additives: a step towards a CO2 circular economy, https://www.recodeh2020.eu/). This paper reflects only the author's view and the content is the sole responsibility of the authors. The European Commission or its services cannot be held responsible for any use that may be made of the information it contains.Publicad

    Catalytic Oxidation of Soot and Volatile Organic Compounds over Cu and Fe Doped Manganese Oxides Prepared via Sol-Gel Synthesis

    Get PDF
    A set of manganese oxide catalysts was synthesized and doped with Cu and/or Fe by means of the citric acid sol-gel preparation method. The samples were studied by means of several characterization techniques: field-emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), N2-physisorption at -196 °C, H2 and soot temperature-programmed reduction (H2-TPR, soot-TPR) and X-ray photoelectron spectroscopy (XPS). The catalytic performance of the prepared catalysts was investigated in the oxidation of a probe VOC molecule (propylene) and carbon soot singularly and simultaneously. The catalytic performances were studied as well assuring a content of 5 vol.% of water in the gaseous reactive mix. The investigations evidenced that the best soot catalytic oxidation rates occurred over the Mn2O3 sample, while the copper-doped manganese oxide (i.e. the MnCu15) showed the best performance in the decomposition of propylene. The soot conversion rates of the samples were positively correlated to the Mn3+/Mn2+ ratio of the samples, while the activity in the oxidation of propylene could be attributed to the reducibility enhancement caused by the insertion of Cu species in the structure of Mn2O3. The most active samples in soot oxidation demonstrated only a slight catalytic activity deactivation after thermal aging and practically no deactivation during the tests with humidity. Interestingly, the simultaneous soot-propylene oxidation tests evidenced an enhancement of the oxidation of soot particles in "tight"contact with the catalyst, likely due to a cooperative effect between soot and propylene oxidation

    Catalytic Abatement of Volatile Organic Compounds and Soot over Manganese Oxide Catalysts

    Get PDF
    A set of manganese oxide catalysts was synthesized via two preparation techniques: solution combustion synthesis (Mn3O4/Mn2O3-SCS and Mn2O3-SCS) and sol-gel synthesis (Mn2O3-SG550 and Mn2O3-SG650). The physicochemical properties of the catalysts were studied by means of N2-physisorption at −196◦ C, X-ray powder diffraction, H2 temperature-programmed reduction (H2-TPR), soot-TPR, X-ray photoelectron spectroscopy (XPS) and field-emission scanning electron microscopy (FESEM). The high catalytic performance of the catalysts was verified in the oxidation of Volatile Organic Compounds (VOC) probe molecules (ethene and propene) and carbon soot in a temperature-programmed oxidation setup. The best catalytic performances in soot abatement were observed for the Mn2O3-SG550 and the Mn3O4/Mn2O3-SCS catalysts. The catalytic activity in VOC total oxidation was effectively correlated to the enhanced low-temperature reducibility of the catalysts and the abundant surface Oα-species. Likewise, low-temperature oxidation of soot in tight contact occurred over the Mn2O3-SG550 catalyst and was attributed to high amounts of surface Oα-species and better surface reducibility. For the soot oxidation in loose contact, the improved catalytic performance of the Mn3O4/Mn2O3-SCS catalyst was attributed to the beneficial effects of both the morphological structure that—like a filter—enhanced the capture of soot particles and to a probable high amount of surface acid-sites, which is characteristic of Mn3O4 catalysts

    Aqueous phase reforming of the residual waters derived from lignin-rich hydrothermal liquefaction: investigation of representative organic compounds and actual biorefinery streams

    Get PDF
    Secondary streams in biorefineries need to be valorized to improve the economic and environmental sustainability of the plants. Representative model compounds of the water fraction from the hydrothermal liquefaction (HTL) of biomass were subjected to aqueous phase reforming (APR) to produce hydrogen. Carboxylic and bicarboxylic acids, hydroxyacids, alcohols, cycloketones and aromatics were identified as model compounds and tested for APR. The tests were performed with a Pt/C catalyst and the influence of the carbon concentration (0.3–1.8 wt. C%) was investigated. Typically, the increase of the concentration negatively affected the conversion of the feed toward gaseous products, without influencing the selectivity toward hydrogen production. A synthetic ternary mixture (glycolic acid, acetic acid, lactic acid) was subjected to APR to evaluate any differences in performance compared to the tests with single compounds. Indeed, glycolic acid reacted faster in the mixture than in the corresponding single compound test, while acetic acid remained almost unconverted. The influence of the reaction time, temperature and carbon concentration was also evaluated. Finally, residual water resulting from the HTL of a lignin-rich stream originating from an industrial-scale lignocellulosic ethanol process was tested for the first time, after a thorough characterization. In this framework, the stability of the catalyst was studied and found to be correlated to the presence of aromatics in the aqueous feedstock. For this reason, the influence of an extraction procedure for the selective removal of these compounds was explored, leading to an improvement in the APR performance

    In situ Raman analyses of the soot oxidation reaction over nanostructured ceria-based catalysts

    Get PDF
    Abstract To reduce the emissions of internal combustion engines, ceria-based catalysts have been widely investigated as possible alternatives to the more expensive noble metals. In the present work, a set of four different ceria-based materials was prepared via hydrothermal synthesis, studying the effect of Cu and Mn as dopants both in binary and ternary oxides. In situ Raman analyses were carried out to monitor the behaviour of defect sites throughout thermal cycles and during the soot oxidation reaction. Despite ceria doped with 5% of Cu featured the highest specific surface area, reducibility and amount of intrinsic and extrinsic defects, a poor soot oxidation activity was observed through the standard activity tests. This result was confirmed by the calculation of soot conversion curves obtained through a newly proposed procedure, starting from the Raman spectra collected during the in situ tests. Moreover, Raman analyses highlighted that new defectiveness was produced on the Cu-doped catalyst at high temperature, especially after soot conversion, while a slight increase of the defect band and a total reversibility were observed in case of the ternary oxide and pure/Mn-doped ceria, respectively. The major increment was related to the extrinsic defects component; tests carried out in different atmospheres suggested the assignment of this feature to vacancy-free sites containing oxidized doping cations. Its increase at the end of the tests can be an evidence of peroxides and superoxides deactivation on catalysts presenting excessive oxygen vacancy concentrations. Instead, ceria doped with 5% of Mn exhibited the best soot oxidation activity, thanks to an intermediate density of oxygen vacancies and to its well-defined morphology
    • …
    corecore