9,484 research outputs found

    The pairing Hamiltonian for one pair of identical nucleons bound in a potential well

    Get PDF
    The problem of one pair of identical nucleons sitting in N{\cal N} single particle levels of a potential well and interacting through the pairing force is treated introducing even Grassmann variables. The eigenvectors are analytically expressed solely in terms of these with coefficients fixed by the eigenvalues and the single particle energies. When the latter are those of an harmonic oscillator well an accurate expression is derived for both the collective eigenvalue and for those trapped in between the single particle levels, for any strength of the pairing interaction and for any number of levels. Notably the trapped solutions are labelled through an index upon which they depend parabolically.Comment: 5 pages, 1 postscript figur

    Fiber R and D for the CMS HCAL

    Get PDF
    This paper documents the fiber R and D for the CMS hadron barrel calorimeter (HCAL). The R and D includes measurements of fiber flexibility, splicing, mirror reflectivity, relative light yield, attenuation length, radiation effects, absolute light yield, and transverse tile uniformity. Schematics of the hardware for each measurement are shown. These studies are done for different diameters and kinds of multiclad fiber.Comment: 23 pages, 30 Figures 89 pages, 41 figures, corresponding author: H. Budd, [email protected]

    Nuclear effects in charged-current quasielastic neutrino-nucleus scattering

    Get PDF
    After a short review of the recent developments in studies of neutrino-nucleus interactions, the predictions for double-differential and integrated charged current-induced quasielastic cross sections are presented within two different relativistic approaches: one is the so-called SuSA method, based on the superscaling behavior exhibited by electron scattering data; the other is a microscopic model based on relativistic mean field theory, and incorporating final-state interactions. The role played by the meson-exchange currents in the two-particle two-hole sector is explored and the results are compared with the recent MiniBooNE data.Comment: 12 pages, 9 figures, to appear in the Proceedings of "XIII Convegno di Cortona su Problemi di Fisica Nucleare Teorica", Cortona (Italy), April 6-8, 201

    Extensions of Superscaling from Relativistic Mean Field Theory: the SuSAv2 Model

    Get PDF
    We present a systematic analysis of the quasielastic scaling functions computed within the Relativistic Mean Field (RMF) Theory and we propose an extension of the SuperScaling Approach (SuSA) model based on these results. The main aim of this work is to develop a realistic and accurate phenomenological model (SuSAv2), which incorporates the different RMF effects in the longitudinal and transverse nuclear responses, as well as in the isovector and isoscalar channels. This provides a complete set of reference scaling functions to describe in a consistent way both (e,e)(e, e') processes and the neutrino/antineutrino-nucleus reactions in the quasielastic region. A comparison of the model predictions with electron and neutrino scattering data is presented.Comment: 19 pages, 24 figure

    Effect of ELF e.m. fields on metalloprotein redox-active sites

    Full text link
    The peculiarity of the distribution and geometry of metallic ions in enzymes pushed us to set the hypothesis that metallic ions in active-site act like tiny antennas able to pick up very feeble e.m. signals. Enzymatic activity of Cu2+, Zn2+ Superoxide Dismutase (SOD1) and Fe2+ Xanthine Oxidase (XO) has been studied, following in vitro generation and removal of free radicals. We observed that Superoxide radicals generation by XO is increased by a weak field having the Larmor frequency fL of Fe2+ while the SOD1 kinetics is sensibly reduced by exposure to a weak field having the frequency fL of Cu2+ ion.Comment: 18 pages, 4 figure

    Neutrino and antineutrino CCQE scattering in the SuperScaling Approximation from MiniBooNE to NOMAD energies

    Get PDF
    We compare the predictions of the SuperScaling model for charged current quasielastic muonic neutrino and antineutrino scattering from 12^{12}C with experimental data spanning an energy range up to 100 GeV. We discuss the sensitivity of the results to different parametrizations of the nucleon vector and axial-vector form factors. Finally, we show the differences between electron and muon (anti-)neutrino cross sections relevant for the ν\nuSTORM facility.Comment: 14 pages, 7 figures; v2: small corrections in the text and two added references; version accepted for publication by Phys. Lett.

    Connecting scaling with short-range correlations

    Get PDF
    We reexamine several issues related to the physics of scaling in electron scattering from nuclei. A basic model is presented in which an assumed form for the momentum distribution having both long- and short-range contributions is incorporated in the single-particle Green function. From this one can obtain saturation of nuclear matter for an NN interaction with medium-range attraction and short-range repulsion, and can obtain the density-density polarization propagator and hence the electromagnetic response and scaling function. For the latter, the shape of the scaling function and how it approaches scaling as a function of momentum transfer are both explored.Comment: 24 pages, 15 figures. A reference has been corrected and update

    The frozen nucleon approximation in two-particle two-hole response functions

    Get PDF
    We present a fast and efficient method to compute the inclusive two-particle two-hole (2p-2h) electroweak responses in the neutrino and electron quasielastic inclusive cross sections. The method is based on two approximations. The first neglects the motion of the two initial nucleons below the Fermi momentum, which are considered to be at rest. This approximation, which is reasonable for high values of the momentum transfer, turns out also to be quite good for moderate values of the momentum transfer qkFq\gtrsim k_F. The second approximation involves using in the "frozen" meson-exchange currents (MEC) an effective Δ\Delta-propagator averaged over the Fermi sea. Within the resulting "frozen nucleon approximation", the inclusive 2p-2h responses are accurately calculated with only a one-dimensional integral over the emission angle of one of the final nucleons, thus drastically simplifying the calculation and reducing the computational time. The latter makes this method especially well-suited for implementation in Monte Carlo neutrino event generators.Comment: 8 pages, 5 figures and 1 tabl

    Two-nucleon emission in neutrino and electron scattering from nuclei: the modified convolution approximation

    Full text link
    The theoretical formalism of inclusive lepton-nucleus scattering in the two-nucleon emission channel is discussed in the context of a simplified approach, the modified convolution approximation. This allows one to write the 2p2h responses of the relativistic Fermi gas as a folding integral of two 1p1h responses with the energies and momenta transferred to each nucleon. The idea behind this method is to introduce different average momenta for the two initial nucleons in the matrix elements of the two-body current, with the innovation that they depend on the transferred energies and momenta. This method treats exactly the two-body phase space kinematics, and reduces the formulae of the response functions from seven-dimensional integrals over momenta to much simpler three-dimensional ones. The applicability of the method is checked by comparing with the full results within a model of electroweak meson-exchange currents. The predictions are accurate enough, especially in the low-energy threshold region where the average momentum approximation works the best.Comment: 35 pages, 13 figure

    Relativistic Hamiltonians in many-body theories

    Get PDF
    We discuss the description of a many-body nuclear system using Hamiltonians that contain the nucleon relativistic kinetic energy and potentials with relativistic corrections. Through the Foldy-Wouthuysen transformation, the field theoretical problem of interacting nucleons and mesons is mapped to an equivalent one in terms of relativistic potentials, which are then expanded at some order in 1/m_N. The formalism is applied to the Hartree problem in nuclear matter, showing how the results of the relativistic mean field theory can be recovered over a wide range of densities.Comment: 14 pages, uses REVTeX and epsfig, 3 postscript figures; a postscript version of the paper is available by anonymous ftp at ftp://carmen.to.infn.it/pub/depace/papers/951
    corecore