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Abstract.

After a short review of the recent developments in studies of neutrino-nucleus interactions,
the predictions for double-differential and integrated charged current-induced quasielastic cross
sections are presented within two different relativistic approaches: one is the so-called SuSA
method, based on the superscaling behavior exhibited by electron scattering data; the other
is a microscopic model based on relativistic mean field theory, and incorporating final-state
interactions. The role played by the meson-exchange currents in the two-particle two-hole
sector is explored and the results are compared with the recent MiniBooNE data.

1. Introduction

The analysis and interpretation of ongoing and future neutrino oscillation experiments strongly
rely on the nuclear modeling for describing the interaction of neutrinos and anti-neutrinos with
the detector. Moreover, neutrino-nucleus scattering has recently become a matter of debate in
connection with the possibility of extracting information on the nucleon axial mass. Specifically,
the data on muon neutrino charged-current quasielastic (CCQE) cross sections obtained by the
MiniBooNE collaboration [1] are substantially underestimated by the Relativistic Fermi Gas
(RFG) prediction. This has been ascribed either to effects in the elementary neutrino-nucleon
interaction, or to nuclear effects. The most poorly known ingredient of the single nucleon cross
section is the cutoff parameter MA employed in the dipole prescription for the axial form factor
of the nucleon, which can be extracted from ν and ν scattering off hydrogen and deuterium and
from charged pion electroproduction. If MA is kept as a free parameter in the RFG calculation,
a best fit of the MiniBooNE data yields a value of the order of 1.35 GeV/c2, much larger than
the average value MA ≃ 1.026± 0.021 GeV/c2 extracted from the (anti)neutrino world data [2].
This should be taken more as an indication of incompleteness of the theoretical description of
the data based upon the RFG, rather than as a true indication for a larger axial mass. Indeed it
is well-known from comparisons with electron scattering data that the RFG model is too crude
to account for the nuclear dynamics. Hence it is crucial to explore more sophisticated nuclear
models before drawing conclusions on the value of MA.

Several calculations have been recently performed and applied to neutrino reactions. These
include, besides the approach that will be presented here, models based on nuclear spectral
functions [3, 4, 5, 6, 7, 8, 9, 10], relativistic independent particle models [11, 12, 13], relativistic
Green function approaches [14, 15, 16, 17, 18], models including NN correlations [19, 20, 21],
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coupled-channel transport models [22, 23, 24, 25], RPA calculations [26, 27, 28] and models
including multinucleon knock-out [29, 30, 31, 32]. The difference between the predictions of
the above models can be large due to the different treatment of both initial and final state
interactions. As a general trend, the models based on impulse approximation, where the
neutrino is supposed to scatter off a single nucleon inside the nucleus, tend to underestimate
the MiniBooNE data, while a sizable increase of the cross section is obtained when two-
particle-two-hole (2p-2h) mechanisms are included in the calculations. Furthermore, a recent
calculation performed within the relativistic Green function (RGF) framework has shown
that at this kinematics the results strongly depend on the phenomenological optical potential
used to describe the final state interaction between the ejected nucleon and the residual
nucleus [18]. With an appropriate choice of the optical potential the RGF model can reproduce
the MiniBooNE data without the need of modifying the axial mass (see Giusti’s contribution to
this volume [33]).

The kinematics of the MiniBooNE experiment, where the neutrino flux spans a wide range of
energies reaching values as high as 3 GeV, demands relativity as an essential ingredient. This is
illustrated in figure 1, where the relativistic and non-relativistic Fermi gas results for the CCQE
double differential cross section of 1 GeV muon neutrinos on 12C are shown as a function of the
outgoing muon momentum and for two values of the muon scattering angle. The relativistic
effects, which affect both the kinematics and the dynamics of the problem, have been shown to
be relevant even at moderate momentum and energy transfers [34, 35]. Hence in our approachE� = 1 GeV, � = 450 RFGNRFG
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Figure 1. (Color online) νµCCQE double differential cross sections on 12C displayed versus the
outgoing muon momentum for non-relativistic (NRFG) and relativistic (RFG) Fermi gas.

we try to retain as much as possible the relativistic aspects of the problems.
In spite of its simplicity, the RFG has the merit of incorporating an exact relativistic

treatment, fulfilling the fundamental properties of Lorentz covariance and gauge invariance.
However, it badly fails to reproduce the electron scattering data, in particular when it is
compared with the Rosenbluth-separated longitudinal and transverse responses. Comparison
with electron scattering data must be a guiding principle in selecting reliable models for neutrino
reactions. A strong constraint in this connection is represented by the “superscaling” analysis
of the world inclusive (e, e′) data: in Refs. [36, 37, 38, 39, 40] it has been proved that, for
sufficiently large momentum transfers, the reduced cross section (namely the double differential
cross section divided by the appropriate single nucleon factors), when represented versus the
scaling variable ψ [41], is largely independent of the momentum transfer (first-kind scaling)
and of the nuclear target (second-kind scaling). The simultaneous occurrence of the two kinds
of scaling is called susperscaling. Moreover, from the experimental longitudinal response a
phenomenological quasielastic scaling function has been extracted that shows a clear asymmetry
with respect to the quasielastic peak (QEP) with a long tail extended to positive values of
the scaling variable, i.e., larger energy transfers. On the contrary the RFG model, as well as
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most models based on impulse approximation, give a symmetric superscaling function with a
maximum value 20-30% higher than the data [42].

In this contribution, after recalling the basic formalism for CCQE reactions and their
connection with electron scattering, we shall illustrate two models which provide good agreement
with the above properties of electron scattering data: one of them, the relativistic mean
field (RMF) model, comes from microscopic many-body theory, the other, the superscaling
approximation (SuSA) model, is extracted from (e, e′) phenomenology. We shall then include
the contribution of 2p-2h excitations in the SuSA model and finally compare our results with the
MiniBooNE double differential, single differential and total cross sections. Most of the results
which will be presented are contained in Refs. [43] and [44].

2. Formalism

Charged current quasielastic muonic neutrino scattering (νµ, µ
−) off nuclei is very closely related

to quasielastic inclusive electron scattering (e, e′). However two major differences occur between
the two processes:

(i) in the former case the probe interacts with the nucleus via the weak force, in the latter the
interaction is (dominantly) electromagnetic. While the weak vector current is related to the
electromagnetic one via the CVC theorem, the axial current gives rise to a more complex
structure of the cross sections, with new response functions which cannot be related to the
electromagnetic ones. As a consequence, while in electron scattering the double-differential
cross section can be expressed in terms of two response functions, longitudinal and transverse
with respect to three-momentum carried by the virtual photon, for the CCQE process it
can be written according to a Rosenbluth-like decomposition as [45]

[

d2σ

dTµd cos θ

]

Eν

= σ0

[

V̂LRL + V̂TRT + V̂T ′RT ′

]

, (1)

where Tµ and θ are the muon kinetic energy and scattering angle, Eν is the incident neutrino

energy, σ0 is the elementary cross section, V̂i are kinematic factors and Ri are the nuclear
response functions, the indices L, T, T ′ referring to longitudinal, transverse, transverse-axial,
components of the nuclear current, respectively. The expression (1) is formally analogous
to the inclusive electron scattering case, but: i) the “longitudinal” response RL takes
contributions from the charge (0) and longitudinal (3) components of the nuclear weak
current, which, at variance with the electromagnetic case, are not related to each other by
current conservation, ii) RL and RT have both “VV” and “AA” components (stemming
from the product of two vector or axial currents, respectively), iii) a new response, RT ′ ,
arises from the interference between the axial and vector parts of the weak nuclear current.
In figure 2 we show the separate contributions of the three responses in (1), evaluated in
the RFG model for the 12C target nucleus, for two different values of the scattering angle.
It can be seen that in the forward direction the transverse response dominates over the
longitudinal and transverse-axial ones, whereas at higher angles the L-component becomes
negligible and the T ′ and T responses are almost equal. This cancellation has important
consequences on antineutrino-nucleus scattering, where the response RT ′ has opposite sign.

(ii) In (e, e′) experiments the energy of the electron is well-known, and therefore the detection
of the outgoing electron univoquely determines the energy and momentum transferred to
the nucleus. In neutrino experiments the neutrino energy is not known, but distributed
over a range of values (for MiniBooNE from 0 to 3 GeV with an average value of about 0.8
GeV). The cross section must then be evaluated as an average over the experimental flux
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Figure 2. (Color online) Separate contributions of the RFG longitudinal (L), transverse (T )
and axial-vector interference (T ′) responses to the double differential νµCCQE cross sections
displayed versus the muon kinetic energy at two different angles. The neutrino energy is averaged
over the MiniBooNE flux and the axial mass parameter has the standard value.

Φ(Eν)

d2σ

dTµd cos θ
=

1

Φtot

∫

[

d2σ

dTµd cos θ

]

Eν

Φ(Eν)dEν , (2)

which may require to account for effects not included in models devised for quasi-free
scattering. This is, for instance, the situation at the most forward scattering angles, where
a significant contribution in the cross section comes from very low-lying excitations in
nuclei [43], as illustrated in figure 3: here the double differential cross section is evaluated
in the SuSA model (see later) at the MiniBooNE kinematics and the lowest angular bin
and compared with the result obtained by excluding the energy transfers lower than 50
MeV from the flux-integral (2). It appears that at these angles 30-40% of the cross section
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Figure 3. (Color online) Solid lines
(red online): flux-integrated νµCCQE cross
sections on 12C calculated in the SuSA
model for a specific bin of scattering angle.
Dashed lines (green online): a lower cut
ω = 50 MeV is set in the integral over the
neutrino flux.

corresponds to very low energy transfers, where collective effects dominate. Moreover,
processes involving meson exchange currents (MEC), which can excite both one-particle-
one-hole (1p1h) and two-particle-two-hole (2p-2h) states via the exchange of a virtual meson,
should also be taken into account, since they lead to final states where no pions are present,
classified as “quasielastic” in the MiniBooNE experiment.

3. Models

In this Section we briefly outline the main ingredients of the RMF and SuSA model and we
illustrate our calculation of the contribution of 2p-2h meson exchange currents.

13th Conference on Theoretical Nuclear Physics in Italy IOP Publishing
Journal of Physics: Conference Series 336 (2011) 012024 doi:10.1088/1742-6596/336/1/012024

4



3.1. RMF
In the RMF model a fully relativistic description of both the kinematics and the dynamics of
the process is incorporated.

Details on the RMF model applied to inclusive QE electron and CCQE neutrino reactions can
be found in Refs. [46, 47, 48, 49, 50, 51]. Here we simply recall that the weak response functions
are given by taking the appropriate components of the weak hadronic tensor, constructed from
the single-nucleon current matrix elements

〈Jµ
W 〉 =

∫

drφF (r)Ĵµ
W (r)φB(r) , (3)

where φB and φF are relativistic bound-state and scattering wave functions, respectively, and
Ĵµ

W is the relativistic one-body current operator modeling the coupling between the virtual W -
boson and a nucleon. The bound nucleon states are described as self-consistent Dirac-Hartree
solutions, derived by using a Lagrangian containing σ, ω and ρ mesons [52, 53, 54]. The outgoing
nucleon wave function is computed by using the same relativistic mean field (scalar and vector
energy-independent potentials) employed in the initial state and incorporates the final state
interactions (FSI) between the ejected proton and the residual nucleus.

The RMF model successfully reproduces the scaling behaviour of inclusive QE (e, e′) processes
and, more importantly, it gives rise to a superscaling function with a significant asymmetry,
namely, in complete accord with data [46, 47]. This is a peculiar property associated to the
consistent treatment of initial and final state interactions. It has been shown in Refs. [46, 47]
that other versions of the RMF model, which deal with the FSI through a real relativistic optical
potential, are not capable of reproducing the asymmetry of the scaling function.

Moreover, contrary to most other models based on impulse approximation, where scaling
of the zeroth kind - namely the equality of the longitudinal and transverse scaling functions
- occurs, the RMF model provides L and T scaling functions which differ by typically 20%,
the T one being larger. This agrees with the analysis [39] of the existing L/T separated data,
which has shown that, after removing inelastic contributions and two-particle-emission effects,
the purely nucleonic transverse scaling function is significantly larger than the longitudinal one.

3.2. SuSA
The SuSA model is based on the phenomenological superscaling function extracted from the
world data on quasielastic electron scattering [37]. The model has been extended to the ∆-
resonance region in Ref. [45] and to neutral current scattering in Ref. [55], but here we restrict
our attention to the quasielastic charged current case.

Assuming the scaling function f extracted from (e, e′) data to be universal, i.e., valid for
electromagnetic and weak interactions, in [45, 56] CCQE neutrino-nucleus cross sections have
been evaluated by multiplying f by the corresponding elementary weak cross section. Thus in
the SuSA approach all the nuclear responses in (1) are expressed as follows

RK = N
2EF

kF q
UK(q, ω)f(ψ) , (K = L, T, T ′) (4)

where UK are the elementary lepton-nucleon responses, EF and kF are the Fermi energy and
momentum, N is the number of nucleons (neutrons in the νµCCQE case) and f(ψ) in the
universal superscaling function, depending only on the scaling variable ψ [41].

The SuSA approach provides nuclear-model-independent neutrino-nucleus cross sections and
reproduces the longitudinal electron data by construction. However, its reliability rests on some
basic assumptions.
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First, it assumes that the scaling function - extracted from longitudinal (e, e′) data - is
appropriate for all of the weak responses involved in neutrino scattering (charge-charge, charge-
longitudinal, longitudinal-longitudinal, transverse and axial), and is independent of the vector
or axial nature of the nuclear current entering the hadronic tensor. In particular it assumes
the equality of the longitudinal and transverse scaling functions (scaling of the zeroth kind),
which, as mentioned before, has been shown to be violated both by experiment and by some
microscopic models, for example relativistic mean field theory.

Second, the charged-current neutrino responses are purely isovector, whereas the
electromagnetic ones contain both isoscalar and isovector components and the former involve
axial-vector as well as vector responses. One then has to invoke a further kind of scaling, namely
the independence of the scaling function of the choice of isospin channel — so-called scaling of
the third kind.

Finally, the SuSA approach neglects violations of scaling of first and second kinds. These are
known to be important at energies above the QE peak and to reside mainly in the transverse
channel, being associated to effects which go beyond the impulse approximation: inelastic
scattering, meson-exchange currents and the associated correlations needed to conserve the
vector current. The inclusion of these contributions in the SuSA model is discussed in the next
paragraph.

3.3. 2p-2h MEC
Meson exchange currents are two-body currents carried by a virtual meson which is exchanged
between two nucleons in the nucleus. They are represented by the diagrams in figure 4, where
the external lines correspond to the virtual boson (γ or W ) and the dashed lines to the
exchanged meson: in our approach we only consider the pion, which is believed to give the
dominant contribution in the quasielastic regime. The thick lines in diagrams (d)-(g) represent
the propagation of a ∆-resonance. The explicit relativistic expressions for the current matrix
elements can be found, e.g., in Ref. [57].
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Figure 4. Two-body
meson-exchange currents.
(a) and (b): “contact”,
or “seagull” diagram;
(c): “pion-in-flight” dia-
gram; (d)-(g): “∆-MEC”
diagram.

Being two-body currents, the MEC can excite both one-particle one-hole (1p-1h) and
two-particle two-hole (2p-2h) states. In the 1p-1h sector, MEC studies of electromagnetic
(e, e′) process have been performed for low-to-intermediate momentum transfers (see, e.g.,
[58, 35, 59, 60]), showing a small reduction of the total response at the quasielastic peak, mainly
due to diagrams involving the electroexcitation of the ∆ resonance.
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However in a perturbative scheme where all the diagrams containing one and only one pionic
line are retained, the MEC are not the only diagrams arising, but pionic correlation contributions,
where the virtual boson is attached to one of the two interacting nucleons, should also be
considered. These are represented by the same diagrams as in figure 4(d)-(g), where now the
thick lines are nucleon propagators. Only when all the diagrams are taken into account gauge
invariance is fulfilled and the full two-body current is conserved. Correlation diagrams have
been shown to roughly compensate the pure MEC contribution [58, 35, 59, 60], so that in first
approximation we can neglect the 1p-1h sector and restrict our attention to 2p-2h final states.

The contribution to the inclusive electron scattering cross section arising from two-nucleon
emission via meson exchange current interactions was first calculated in the Fermi gas model
in Refs. [61, 62], where sizable effects were found at large energy transfers. In these references
a non-relativistic reduction of the currents was performed, while fully relativistic calculations
have been developed more recently in Refs. [63, 64, 57]. It has been found that the MEC
give a significant positive contribution which leads to a partial filling of the “dip” between the
quasielastic peak and the analogous peak associated with the excitation of the ∆ resonance.
Moreover, the MEC have been shown to break scaling of both first and second kinds [65].

Here we use the fully relativistic model of [64], where all the MEC many-body diagrams
containing two pionic lines that contribute to the electromagnetic 2p-2h transverse response
were taken into account. Similar results for the 2p-2h MEC were obtained in Ref. [57], where
the correlation diagrams were also included.

In order to apply the model to neutrino scattering, we observe that in lowest order the 2p2h
sector is not directly reachable for the axial-vector matrix elements. Hence the MEC affect
only the transverse polar vector response, RV V

T . Note that, at variance with the 1p-1h sector,
where the contribution of the MEC diagrams originates from the interference between 1-body
and 2-body amplitudes and has therefore no definite sign (in fact it turns out to be negative
due to the dominance of the diagrams involving the ∆), the 2p-2h contribution of MEC to the
nuclear responses is the square of an amplitude, hence it is positive by definition. Therefore
the net effect of 2p-2h MEC to neutrino scattering is to increase the transverse vector response
function, as will be illustrated in the next section.

4. Results

In this Section we present the predictions of the above models and their comparison with the
MiniBooNE data. More results can be found in Refs. [43] and [44].

In figures 5 and 6 the flux-integrated double-differential cross section per target nucleon for
the νµCCQE process on 12C is evaluated for the three nuclear models above described: the RMF
model and the SuSA approach with and without the contribution of 2p-2h MEC. In figure 5 the
cross sections are displayed versus the muon kinetic energy Tµ at fixed scattering energy θ, in
figure 6 they are displayed versus cos θ at fixed Tµ.

It appears that the SuSA predictions systematically underestimate the experimental cross
section, the discrepancy being larger at high scattering angle and low muon kinetic energy. The
inclusion of 2p-2h MEC tends to improve the agreement with the data at low angles, but it
is not sufficient to account for the discrepancy at higher angles. The RMF calculation, which,
as already mentioned, incorporates violations of scaling of the zeroth kind with a substantial
enhancement of the vector transverse response, yields cross sections which are in general larger
than the SuSA ones. In particular, in the region close to the peak in the cross section, the
RMF result becomes larger than the one obtained with SuSA+MEC. Furthermore, the RMF
does better than SuSA in fitting the shape of the experimental curves versus both the scattering
angle and the muon energy: this is partly due to the fact that the RMF is better describing
the low-energy excitation region whereas the SuSA model has no predictive power at very low
angles, where the cross section is dominated by low excitation energies and the superscaling
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ideas are not supposed to apply.
Concerning the SuSA+MEC results, a possible explanation of the theory/data disagreement

is the fact that, as already mentioned, a fully consistent treatment of two-body currents should
take into account not only the genuine MEC contributions, but also the correlation diagrams
that are necessary in order to preserve the gauge invariance of the theory. This, however, is
not an easy task because in an infinite system like the RFG the correlation diagrams give rise
to divergences which need to be regularized [57]. The divergences arise from a double pole in
some of the diagrams, associated to the presence of on-shell nucleon propagators. Different
prescriptions have been used in the literature in order to overcome this problem [66, 67, 68, 57],
leading to a substantial model-dependence of the results. In particular in Ref. [57] the divergence
has been cured by introducing a parameter ǫ which accounts for the finite size of the nucleus (and
therefore the finite time of propagation of a nucleon inside the nucleus) and the ǫ-dependence
of the contribution of correlation diagrams has been explored. The study has shown that for
reasonable values of the parameter the correlations add to the pure MEC in the high-energy tail
and are roughly of the same order of magnitude, but now contributing to both the longitudinal
and the transverse channels. The inclusion of these terms in neutrino reactions is in progress [69]
and is expected to give a further enhancement of the cross sections.
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Figure 5. (Color online) Flux-integrated double-differential cross section per target nucleon
for the νµ CCQE process on 12C evaluated in the RMF (red) model and in the SuSA approach
with (blue line) and without (green line) the contribution of MEC and displayed versus the
muon kinetic energy Tµ for three specific bins of the scattering angle. The data are from
MiniBooNE [1].
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Figure 6. (Color online) Flux-integrated double-differential cross section per target nucleon for
the νµ CCQE process on 12C evaluated in the RMF (red) model and in the SuSA approach with
(blue line) and without (green line) the contribution of MEC and displayed versus the muon
scattering angle for three bins of the muon kinetic energy Tµ. The data are from MiniBooNE [1].

The single differential cross sections with respect to the muon kinetic energy and scattering
angle, respectively, are presented in figures 7 and 8, where the relativistic Fermi gas result is
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also shown for comparison: again it appears that the RMF gives slightly higher cross sections
than SuSA, due to the L/T unbalance, but both models still underestimate the data for most
kinematics. The inclusion of 2p-2h excitations leads to a good agreement with the data at
high Tµ, but strength is still missing at the lower muon kinetic energies (namely higher energy
transfers) and higher angles.
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Figure 7. (Color online) Flux-averaged
νµCCQE cross section on 12C integrated
over the scattering angle and displayed
versus the muon kinetic energy. The data
are from MiniBooNE [1].
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Figure 8. (Color online) Flux-averaged
νµCCQE cross section on 12C integrated
over the muon kinetic energy and displayed
versus the scattering angle. The data are
from MiniBooNE [1].

Finally, in figure 9 the total (namely integrated over over all muon scattering angles and
energies) CCQE cross section per neutron is displayed versus the neutrino energy and compared
with the experimental flux-unfolded data. Besides the models above discussed, we show for
comparison also the results of the relativistic mean field model when the final state interactions
are ignored (denoted as RPWIA - relativistic plane wave impulse approximation) or described
through a real optical potential (denoted as rROP). Note that the discrepancies between the
various models, observed in figures 5 and 6, tend to be washed out by the integration, yielding
very similar results for the models that include FSI (SuSA, RMF and rROP), all of them giving
a lower total cross section than the models without FSI (RFG and RPWIA). On the other hand
the SuSA+MEC curve, while being closer to the data at high neutrino energies, has a somewhat
different shape with respect to the other models, in qualitative agreement with the relativistic
calculation of [31]. It should be noted, however, that the result is affected by an uncertainty of
about 5% associated with the treatment of the 2p-2h contribution at low momentum transfers
and that pionic correlations are not included.

5. Conclusions

Two different relativistic models, one (SuSA) phenomenological and the other (RMF)
microscopic, have been applied to the study of charged-current quasielastic neutrino scattering
and the impact of 2p-2h meson exchange currents on the cross sections has been investigated.
The results can be summarized as follows:

(i) Both the SuSA and the RMF models, in contrast with the relativistic Fermi gas, are fitting
with good accuracy the longitudinal quasielastic electron scattering response at intermediate
to high energy and momentum transfer.
The SuSA and RMF models give very similar results for the integrated neutrino cross section
and both substantially under-predict the MiniBooNE experimental data. However the
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Figure 9. (Color online) Total CCQE
cross section per neutron versus the
neutrino energy. The curves corresponding
to different nuclear models are compared
with the flux unfolded MiniBooNE data [1].

comparison with the double differential experimental cross section reveals some differences
between the two models, which are washed out by the integration. Indeed the RMF,
although being lower than the data, reproduces better the slopes of the cross section versus
the muon energy and scattering angle. This is essentially due to the enhancement of the
transverse response, which arises from the self-consistent mean field approach of RMF (in
particular from the consistent treatment of initial and final state interactions) and is absent
in the superscaling approach.

(ii) In relativistic or semi-relativistic models final state interactions have been shown to play an
essential role for reproducing the shape and size of the electromagnetic response [50, 46, 51]
and cannot be neglected, in our scheme, in the study of neutrino interactions. The effect of
final state interactions in the SuSA and RMF models is to lower the cross section, giving a
discrepancy with the data larger than the RFG.

(iii) In the transverse channel, the analysis of (e, e′) data points to the importance of meson-
exchange currents which, through the excitation of two-particle-two-hole states, are partially
responsible of filling the “dip” region between the QE and ∆ peaks. The 2p-2h MEC can be
even more relevant in the CCQE process, where “quasielastic” implies simply that no pions
are present in the final state but, due to the large energy region spanned by the neutrino
flux, processes involving the exchange of virtual pions can give a sizable contribution. In fact
the inclusion of 2p-2h MEC contributions yields larger cross sections and accordingly better
agreement with the data, although the theoretical curves still lie below the data at high
angles and low muon energy. It should be stressed, however, that the present calculation,
though exact and fully relativistic, is incomplete. In order to preserve gauge invariance the
full two-body current, including not only the MEC but also the corresponding correlation
diagrams, must be included. These have recently been shown to yield a sizable contribution
at high energies in (e, e′) scattering [57] and are likely to improve the agreement of our
models with the MiniBooNE data.

(iv) In all our calculations the standard value MA =1.03 GeV/c2 has been used. It has
been suggested that a larger value of the axial mass (1.35 GeV/c2) would eliminate the
disagreement with the data. However the fit was done using a RFG analysis, and more
sophisticated nuclear models must be explored before drawing conclusions on the actual
value of the axial mass. For instance in Ref. [70] it is shown that the MiniBooNE data
can as well be fitted by effectively incorporating some nuclear effects in the magnetic form
factor of the bound nucleon, without changing the axial mass.
Although our scope here is not to extract a value for the axial mass of the nucleon, but
rather to understand which nuclear effects are effectively accounted for by a large axial cutoff
parameter, let us mention that a best fit of the RMF and SuSA results to the MiniBooNE

13th Conference on Theoretical Nuclear Physics in Italy IOP Publishing
Journal of Physics: Conference Series 336 (2011) 012024 doi:10.1088/1742-6596/336/1/012024

10



experimental cross section gives an effective axial mass M eff
A ≃ 1.5 GeV/c2 and values in the

range 1.35 < M eff
A < 1.65 GeV/c2 yield results compatible with the MiniBooNE data within

the experimental errors. A similar analysis in the model including the 2p-2h contribution
will be possible only when the above mentioned correlation diagrams will be consistently
evaluated [69].
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