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We present a systematic analysis of the quasielastic scaling functions computed within the relativistic mean
field (RMF) theory and we propose an extension of the superscaling approach (SuSA) model based on these
results. The main aim of this work is to develop a realistic and accurate phenomenological model (SuSAv2),
which incorporates the different RMF effects in the longitudinal and transverse nuclear responses, as well as in
the isovector and isoscalar channels. This provides a complete set of reference scaling functions to describe in a
consistent way both (e,e′) processes and the neutrino/antineutrino-nucleus reactions in the quasielastic region. A
comparison of the model predictions with electron and neutrino scattering data is presented.

DOI: 10.1103/PhysRevC.90.035501 PACS number(s): 24.10.Jv, 25.30.Fj, 25.30.Pt

I. INTRODUCTION

Scaling is a phenomenon observed in several areas of
physics [1]. It occurs when a particle interacts with a many-
body system in such a way that energy ω and momentum q
are transferred only to individual constituents of the complex
system. In the particular case of quasielastic (QE) scattering
of electrons from nuclei, in most of the models based on
the impulse approximation (IA), the inclusive (e,e′) cross
section can be written approximately as a single-nucleon
cross section times a specific function of (q,ω). Scaling
occurs when, in the limit of high-momentum transfers, that
specific function scales, becoming dependent on only a single
quantity, namely, the scaling variable ψ . This quantity, whose
definition is discussed later, is in turn a function of q and ω:
ψ = ψ(q,ω). The function that results once the single-nucleon
cross section has been divided out is called the scaling function
f = f (q,ψ). In other words, to the extent that at high q this
function depends on ψ , but not on q, one says that ψ scaling
occurs.

The study of the scaling function can shed light on the
dynamics of the nuclear system. Indeed, within some specific
approaches, the scaling function is related to the momentum
distribution of the nucleons in the nucleus (or, more generally,
with the spectral function) [2,3].

When studying (e,e′) processes, it is useful to introduce the
following concepts.

(i) Scaling of the first kind. This is what is discussed
above: It is satisfied when the scaling function does
not explicitly depend on the transferred momentum,
but only on ψ including its implicit dependence on q
and ω.

(ii) Scaling of the second kind. This is observed when the
scaling function is independent of the nuclear species.

(iii) Scaling of the zeroth kind. This occurs when the scaling
functions linked to the different channels that make up
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the cross section, longitudinal (L) and transverse (T),
are equal. For example, when considering inclusive
electron scattering, zeroth-kind scaling means that
the electromagnetic (EM) scaling functions satisfy
f = fL = fT , where f represents the total EM scal-
ing function and fL,T are the EM longitudinal and
transverse ones.

(iv) Superscaling. Finally, when scaling of both the first
and the second kinds occurs simultaneously, one has
superscaling [4,5].

The relativistic Fermi gas (RFG) model, in spite of its
simplicity, provides a completely relativistic description of the
QE process and allows for fully analytical expressions [5,6].
Additionally, the RFG model satisfies exactly all of the kinds
of scaling introduced above. Following the formalism of
Refs. [4,5,7], in this work we use the RFG cross sections to
build the EM scaling functions (fL,T ). The general procedure
used to define scaling functions consists of constructing
the inclusive cross section, or response functions, within a
particular model (or data) and then dividing them by the
corresponding single-nucleon quantity computed within the
RFG model. The explicit expressions for the RFG single-
nucleon cross section and response functions are given in
Appendix A.

In previous works [4,5,7–9] a large body of (e,e′) cross
section data were analyzed within this scaling formalism.
The results show that first-kind scaling works reasonably well
in the region ω < ωQEP (ωQEP being the transferred energy
corresponding to the QE peak), while second-kind scaling is
excellent in the same region of ω. In contrast, when ω > ωQEP

both first- and second-kind scaling are seen to be violated.
In Refs. [5,7] scaling was studied by analyzing experimental

data for the individual EM longitudinal (RL) and transverse
(RT ) responses. Those studies concluded that fL superscales
approximately throughout the region of the QE peak, while fT

only superscales in the region ω < ωQEP and clearly does not
for ω > ωQEP. The scaling violation in the transverse response
at high ω occurs because in that range of the spectrum other
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R. GONZÁLEZ-JIMÉNEZ et al. PHYSICAL REVIEW C 90, 035501 (2014)

non-QE processes such as meson production and resonance
excitation, at high excitation energies going over into deep
inelastic scattering, and excitation of np-nh states induced by
meson-exchange currents are known to be of importance for a
correct interpretation of the scattering process.

Exploiting the superscaling property exhibited by the
longitudinal data, in Ref. [7] the “experimental longitudinal
scaling function,” namely, f ee′

L,exp, extracted from the analysis
of the longitudinal response for several nuclear species and
kinematical situations, was presented. However, owing to
the non-QE contributions discussed above, the extraction
of an experimental transverse scaling function, f ee′

T ,exp, has
not been systematically performed to date. Nevertheless, in
spite of the difficulty of analyzing the transverse scaling
function, preliminary studies [10], based on the modeling of
the QE longitudinal response and contributions from non-QE
channels, have provided some evidence that the scaling of the
zeroth kind is not fully satisfied by data. In particular, these
studies find f ee′

T ,exp > f ee′
L,exp, a point that is discussed in more

detail later.
The superscaling approach (SuSA) is based on the scaling

properties of the longitudinal response extracted from (e,e′)
data to predict charge changing (CC) QE neutrino- and
antineutrino-nucleus cross sections [11], namely, (νl,l

−) and
(ν̄l ,l

+). Thus, SuSA is based on the hypothesis that the
neutrino cross section scales as does the electron-scattering
cross section. This feature is observed in most of the models
based on IA (see, for instance, Refs. [12–14]). SuSA uses
the experimental scaling function f ee′

L,exp as a universal scaling
function and then builds the different nuclear responses by
multiplying it by the corresponding single-nucleon responses.
However, notice that the extraction of f ee′

L,exp entails the analysis
of the longitudinal (e,e′) (isoscalar + isovector) nuclear
response. In contrast, CC neutrino-nucleus reactions involve
only isovector couplings and are mainly dominated by purely
transverse responses (TV V + TAA and T ′

V A, the indices V and
A referring to the vector and axial components of the weak
hadronic current). Thus, one could question the validity of the
SuSA. This issue was studied in Ref. [15] by analyzing the
scaling functions of the relativistic mean field (RMF) model
(see below). There it was found that, contrary to what one
might expect, the (e,e′) longitudinal scaling function agrees
with the total (νl,l

−) one (which is mainly transverse) much
better than does the transverse scaling function from (e,e′).
This result is explained by the different roles played by the
isovector and isoscalar nucleon form factors in each process
(see Ref. [15] for details).

Within the RMF model the bound and scattered nucleon
wave functions are solutions of the Dirac-Hartree equation
in the presence of energy-independent real scalar (attractive)
and vector (repulsive) potentials. Because the same relativistic
potential is used to describe the initial and final nucleon
states, the model is shown to preserve the continuity equation
(this is strictly true for the CC2 current operator); hence,
the results are almost independent of the particular gauge
selected [13,14]. The RMF approach has achieved significant
success in describing QE electron-scattering data. On the one
hand, its validity has been widely proven through comparisons
with QE (e,e′) data (see Refs. [13,16] and Sec. IV). In this

connection, an important result is that the model reproduces
surprisingly well the magnitude and shape of f ee′

L,exp; i.e., it
yields an asymmetric longitudinal scaling function, with more
strength in the high-ω tail, and with a maximum value (∼
0.6) very close to the experimental one. On the other hand,
the model predicts f ee′

T > f ee′
L . This violation of zeroth-kind

scaling was analyzed in Ref. [15], where it was shown that
the origin of such an effect lies in the distortion of the lower
components of the outgoing nucleon Dirac wave function by
the final-state interactions (FSIs).

However, the RMF model also presents some drawbacks.
First, it predicts a strong dependence of the scaling function
on the transferred momentum q, an occurrence that is hardly
acceptable given the above phenomenological discussion. For
increasing values of q the RMF model presents: (i) a strong
shift of the scaling functions to higher ω values, (ii) too much
enhancement of the area under the tail of the functions, and
(iii) correspondingly too severe a decrease in the maximum
of the scaling functions. All of these features are studied in
detail in Sec. II. Second, getting results with the RMF model
is computationally very expensive, especially when the model
is employed to predict neutrino cross sections where one has to
fold in the flux distribution of the incident neutrino or one has
to compute totally integrated cross sections. Hence, in what
follows, after correcting for the too-strong q dependence of
the RMF model, we implement the main features of the model
in a new version of the SuSA approach, called “SuSA version
2,” or “SuSAv2,” which makes it possible to obtain numerical
predictions to compare with data using fast codes, yet retaining
some of the basic physics of the RMF.

In summary, the main goal of this work is to extend the
SuSA model, incorporating in its formalism information from
the RMF model. So we build the new model in such a way that
it reproduces the experimental longitudinal scaling function,
produces f ee′

T > f ee′
L , takes into account the differences in the

isoscalar/isovector scaling functions and avoids the problems
of the RMF model in the region of medium and high
momentum transfer.

The structure of this work is as follows: In Sec. II we present
and discuss the features of the various scaling functions in
the RMF model. In Sec. III we define the SuSAv2 model. In
Secs. IV and V we present the SuSAv2 results for QE electron-
and neutrino-scattering reactions, respectively, and compare
them with selected experimental data. In Sec. VI we draw our
main conclusions. Some details on the definitions of scaling
functions and on the implementation of Pauli blocking in the
SuSAv2 approach are presented in the Appendices.

II. RMF SCALING BEHAVIOR

In this section we present a systematic analysis of the
scaling functions computed with the RMF and the relativistic
plane wave impulse approximation (RPWIA). Both models
are based on the relativistic impulse approximation (RIA) and
provide a completely relativistic description of the scattering
process. The bound-state Dirac-spinors are the same in both
models and correspond to the solutions of the Dirac equation
with scalar and vector potentials. The two models differ in
the treatment of the final state: The RPWIA describes the
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outgoing nucleon as a relativistic plane wave, while the RMF
model accounts for the FSI between the outgoing nucleon and
the residual nucleus using the same mean field as used for the
bound nucleon.

In this work we analyze the scaling functions involved in the
(e,e′), (ν,μ−), and (ν̄,μ+) reactions as functions of q. Because
there exist a great number of (e,e′) and (νl,l) experimental data
for 12C, in this work we have chosen it as a reference target
nucleus.

We first split all different response functions by isolating
the isoscalar (T = 0) and isovector (T = 1) contributions in
electron scattering, and the vector and axial contributions
for neutrino- and antineutrino-induced reactions: VV (vector-
vector), AA (axial-axial), VA (vector-axial). This strategy
allows us to extract clear information on how the FSIs affect the
different sectors of the nuclear current. Furthermore, it makes
it easier to explore the relationships between the different
responses linked to (e,e′), (ν,μ−) and (ν̄,μ+) reactions.

The (e,e′) inclusive cross section, double differential with
respect to the electron-scattering angle �e and the transferred
energy ω, is defined in terms of two response functions
corresponding to the longitudinal, RL, and transverse, RT ,
channels (L and T refer to the direction of the transferred
momentum, q). It reads

d2σ

d�edω
= σMott(vLRL + vT RT ), (1)

where σMott is the Mott cross section and the v’s are kinematical
factors that involve leptonic variables (see Ref. [8] for explicit
expressions). Assuming charge symmetry, these two channels
can be decomposed as a sum of the isoscalar (T = 0) and
isovector (T = 1) contributions. In terms of the scaling
functions (see Ref. [5]) the nuclear responses are

Ree′
L,T (q,ω) = 1

kF

[
f

T =1,ee′
L,T (ψ ′)GT =1

L,T (q,ω)

+ f
T =0,ee′
L,T (ψ ′)GT =0

L,T (q,ω)
]
. (2)

Similarly, the CC muon-neutrino (antineutrino) cross section
is [11]

d2σ

d�μdεμ

= σ0
(
V̂LRV V

L + V̂CCRAA
CC + 2V̂CLRAA

CL

+ V̂LLRAA
LL + V̂T RT + χV̂T ′RT ′

)
, (3)

where �μ and εμ are the scattering angle and the energy of
the outgoing muon, respectively, χ = + for neutrino-induced
reactions and χ = − for antineutrino ones, σ0 is the equivalent
to the Mott cross section in CC neutrino reactions, and the V̂ ’s
are leptonic kinematical factors (see Refs. [11,12] for explicit
expressions). In this case, the responses are

R
V V,ν(ν̄)
L (q,ω) = 1

kF

f
V V,ν(ν̄)
L (ψ ′)GV V

L (q,ω), (4)

R
AA,ν(ν̄)
CC (q,ω) = 1

kF

f
AA,ν(ν̄)
CC (ψ ′)GAA

CC(q,ω), (5)

R
AA,ν(ν̄)
CL (q,ω) = 1

kF

f
AA,ν(ν̄)
CL (ψ ′)GAA

CL(q,ω), (6)
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FIG. 1. (Color online) Transverse RMF scaling functions nor-
malized to the maximum value corresponding to an arbitrary reference
function and relocated at ψ ′ = 0 (see text for details). The convention
used to label the different curves is as follows: “e” for electron-
induced reactions and “ν” (“aν”) for neutrino- (antineutrino-) induced
reactions. The number at the top of each panel refers to the momentum
transferred, q. Thus, in (a), (b), (c), and (d) panels q is fixed at 500,
800, 1100, and 1400 MeV/c, respectively.

R
AA,ν(ν̄)
LL (q,ω) = 1

kF

f
AA,ν(ν̄)
LL (ψ ′)GAA

LL (q,ω), (7)

R
ν(ν̄)
T (q,ω) = 1

kF

[
f

V V,ν(ν̄)
T (ψ ′)GV V

T (q,ω)

+ f
AA,ν(ν̄)
T (ψ ′)GAA

T (q,ω)
]
, (8)

R
ν(ν̄)
T ′ (q,ω) = 1

kF

f
V A,ν(ν̄)
T ′ (ψ ′)GV A

T ′ (q,ω). (9)

The G’s in Eq. (2) and Eqs. (4)–(9) are the single-nucleon
responses from RFG that are defined in Appendix A. The f ’s
are the scaling functions which—if scaling is fulfilled—only
depend on the scaling variable ψ ′, also defined in Appendix A.
The scaling variable ψ ′ depends on q, ω, and the energy shift,
Eshift, which is introduced to reproduce the position of the
experimental QE peak (see Appendix A).

In the following we examine three basic features of the
scaling functions in the RPWIA and RMF models: shape,
position and height of the peak, and the integrals of the scaling
functions over ψ ′ [17].

A. Shape of the scaling functions

The goal here is to study the shape of all scaling functions.
In Fig. 1 (Fig. 2), for different values of q, we present the
transverse (longitudinal) RMF scaling functions normalized
to the maximum value corresponding to a reference function,
in this case f

V V,ν
T , and relocated so that the maximum is at

ψ ′ = 0. As already mentioned, the scaling variable ψ ′ depends
on q, ω, and Eshift. Thus, for each scaling function, Eshift is
taken so that the maximum is located at ψ ′ = 0. The results
within the RPWIA model are presented in Fig. 3.

We do not present results of f AA
CC , f AA

CL , f AA
LL for neutrino

and antineutrino scattering, and f T =0
T for electron scattering
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FIG. 2. (Color online) As in Fig. 1, but for the longitudinal RMF
scaling functions.

because they are very sensitive to small effects owing to
cancellations and/or to the smallness of the denominator
(G function), which appears in the definition of the scaling
function (see Appendix A). The first three are seen to be
insignificant for neutrino reactions, whereas the fourth does
not enter in that case and is known to be a minor correction in
the QE regime for electron scattering.

Results obtained within RPWIA show that all scaling
functions have the same shape (see Fig. 3). This comment also
applies to models based on nonrelativistic and semirelativistic
descriptions (see Refs. [12,18]).

Within the RMF model, all transverse scaling functions
approximately collapse in a single one. On the contrary,
the longitudinal responses are grouped in two sets: one
corresponding to the pure electron isovector and neutrino
(antineutrino) VV responses, i.e., f

T =1,ee′
L and f

V V,ν(ν̄)
L , and

the other to the isoscalar contribution for electrons, namely,
f

T =0,ee′
L . This result emerges for all q values and tends to be
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FIG. 3. (Color online) As in Fig. 1, but in this case the results
correspond to RPWIA. Transverse and longitudinal sets are presented
together.
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FIG. 4. (Color online) (a) Peak height of the transverse set of
scaling functions as a function of the transferred momentum q. The
upper set of lines corresponds to the prediction within RPWIA, while
the lower set of lines has been obtained with the RMF model. (b) As
for panel (a), but now for the longitudinal set of scaling functions.

rather general. It is also noticeable that the tail is higher and
more extended for the transverse responses, whereas for the
longitudinal ones it tends to go down faster.

It is worth observing that in all cases the RMF scaling
functions display a much more pronounced asymmetric shape
than the RPWIA ones, an effect related to the specific treatment
of FSIs.

B. Height and position of the peak of the scaling function

In panel (a) [panel (b)] in Fig. 4 the peak-height of the
transverse (longitudinal) set of scaling functions is presented
as a function of q. The results correspond to RMF and RPWIA
predictions. We observe that the peak heights of the scaling
functions within RPWIA are almost q independent (and very
close to RFG value of 3/4), while the RMF ones present
a mild q dependence in the transverse set and a somewhat
stronger one for the longitudinal set. It is well known that FSIs
tend to decrease the peak height of the responses, putting the
strength in the tails, especially at high energy loss. This is
particularly true for the RMF approach [13,19] and models
based on the relativistic Green’s function (RGF) [16,20].
Similar effects have also been observed within semirelativistic
approaches [12,18]. More specifically, in Fig. 4, we see that
the discrepancies between the RMF and RPWIA peak-height
results average to ∼25% in the transverse set. However,
those discrepancies are more strongly q dependent in the
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FIG. 5. (Color online) (a) Shift energy, Eshift, needed to have the
corresponding scaling function peak located at ψ ′ = 0, as a function
of q. Results for the transverse set of scaling functions. (b) As for
panel (a), but now for the longitudinal set of scaling functions.

longitudinal sector, reaching ∼30% (∼70%) in the lower
(higher) q region for the longitudinal isovector responses
(blue lines). Finally, the difference between the isoscalar
longitudinal (e,e′) scaling function produced by RMF and
RPWIA (magenta dash-dotted lines) is somewhat smaller:
∼20% (∼30%) for lower (higher) q.

In Fig. 5 we study the position of the peak of the transverse
and longitudinal sets. To this scope we display the energy
shift, Eshift, needed to place the peak of the scaling function
at ψ ′ = 0 as a function of q. In panel (a) of Fig. 5 we see that
for the RPWIA transverse scaling function, Eshift is almost
q independent, while the corresponding RMF shift increases
almost linearly with the momentum transfer. This q-linear
dependence of Eshift was already observed and discussed
within the framework of a semirelativistic model based on the
use of the Dirac-equation-based potential [18]. Approximately,
the same behavior is observed for the longitudinal set [panel
(b) in Fig. 5], although in this case the RPWIA results are
softly linearly dependent on q. It is also worth mentioning
that the three transverse scaling functions linked to the same
neutrino or antineutrino process, f V V

T , f AA
T , and f V A

T ′ , collapse
in a single line for RMF as for RPWIA.

From the analysis of Figs. 4 and 5 one may conclude that
f

T =1,ee′
L presents the same behavior (height and position)

as f
V V,ν(ν̄)
L (blue lines). The differences between these

three curves are approximately constant and arise from the
differences in the bound states involved in the reaction:
proton + neutron in (e,e′), neutron in (ν,μ−), and proton
in (ν̄,μ+). The Coulomb-FSI, namely, the EM interaction
between the struck nucleon and the residual nucleus, which
plays a role when the outgoing nucleon is a proton, could also
introduce a difference; however, we find that its effects are
negligible and that the differences between, for instance, f V V,ν

L

and f
V V,ν̄
L in RPWIA (where no Coulomb-FSI are involved)

are almost the same as in RMF (see Figs. 4 and 5).
As mentioned in the Introduction, the strong q dependence

of the RMF peak position, which keeps growing with the
momentum transfer, is a shortcoming of the model, whose
validity is questionable at very high q. Indeed, for high q
the outgoing nucleon carries a large kinetic energy so the
effects of FSI should be suppressed for such kinematics.
In fact, it would be desirable that the RMF results tend to
approach the RPWIA ones for increasing momentum transfer;
i.e., the scaling functions should become more symmetric, and
a saturation of the peak-height reduction and of the energy shift
should be observed. That trend is consistent with the scaling ar-
guments [4,7,13], i.e., the experimental evidence of a universal
scaling function for increasing q. This is one of the motivations
to use an alternative model if one aims to reproduce the exper-
imental (e,e′) data at medium-to-high momentum transfers.

A possible alternative for the behavior of the peak height,
peak position, and shape of the scaling functions would be to
implement the RMF model at low to intermediate q and the
RPWIA one for higher q values.

C. Sum rules

In Fig. 6, the values of the integrals over ψ ′ of the different
scaling functions within RMF model are presented versus q.
These are given by

Si(q) =
∫ ∞

−∞
fi(ψ,q) dψ. (10)
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The integration limits, denoted by (−∞,+∞), extend in real-
ity to the range allowed by the kinematics. The above integral
in the case of the longitudinal (e,e′) scaling function was shown
to coincide, apart from some minor discrepancies ascribed
to the particular single-nucleon expressions considered and
the influence of the nuclear scale introduced, with the results
obtained using the standard expression for the Coulomb sum
rule (see Ref. [17] for details). Hence, in what follows we
denote the functions Si(q) simply as sum rules.

We see that all integrals of the transverse set are above
unity and increase almost linearly with q. On the contrary,
the integrals of f

V V,ν(ν̄)
L and f

T =1,ee′
L (blue lines) are below

unity and decrease with q up to q = 1100 MeV/c. From
q = 900 MeV/c they begin to be stable around the value 0.7.
Then, from q = 1200 MeV/c to higher q values the integrals
start growing again. However, notice that in that q region
the result of the integrals is very sensitive to the behavior
of the tail of these particular scaling functions (see Fig. 2).
Finally, the values of the integral of the longitudinal isoscalar
function, f

T =0,ee′
L , is approximately constant and close to

unity. The behavior of the integrals of the two longitudinal
scaling functions for (e,e′) is consistent with the analysis of
the Coulomb sum rule for these two models (see Ref. [17]).

Although not shown here, we have also studied the integrals
within RPWIA. In general, one observes that they are almost q
independent in all cases: ∼1 for the longitudinal set and ∼1.05
for the transverse set.

III. EXTENSION OF THE SUPERSCALING APPROACH:
THE SuSAv2 MODEL

In this section we build the SuSAv2 model as a combination
of the original SuSA model and some of the physical
ingredients contained in the RMF and RPWIA models.

On the one hand, as we have shown in the previous
sections, the RMF model has a q dependence that is too
strong. On the other hand, the SuSA model does not account
for the difference between the longitudinal and transverse
(e,e′) scaling functions. Similarly, SuSA does not account
for possible differences in the scaling function linked to
isospin effects (isovector, isoscalar, isovector + isoscalar) or
to the character of the current (JV JV , vector-vector; JV JA,
axial-vector; JAJA, axial-axial).

Thus, we aim to improve the SuSA model by introducing
into it specific information from the RMF approach. The goal
is to get a new version of SuSA, SuSAv2. The model is based
on the following four assumptions.

(i) f ee′
L superscales; i.e., it is independent of the mo-

mentum transfer (scaling of the first kind) and of the
nuclear species (scaling of the second kind). It has
been proven that f ee′

L superscales for a range of q
relatively low (300 < q < 570 MeV/c); see Ref. [4].
As in the original SuSA model, here we assume that
superscaling is fulfilled by nature.

(ii) f ee′
T superscales. It has been shown that f ee′

T approx-
imately superscales in the region ψ < 0 for a wide
range of q (400 < q < 4000 MeV/c); see Ref. [7].
However, we assume that once the contributions from

non-QE processes are removed (MEC, 
-resonance,
DIS, etc.) the superscaling behavior could be extended
to the whole range of ψ .

(iii) The RMF model reproduces quite well the relation-
ships between all scaling functions in the whole range
of q. This assumption is supported by the fact that RMF
model is able to reproduce the experimental scaling
function, f ee′

L,exp, and the fact that it naturally yields the

inequality f ee′
T > f ee′

L .
(iv) At very high q the effects of FSI disappear and all

scaling functions must approach the RPWIA results.

Contrary to what is assumed in the SuSA model, where only
f ee′

L,exp is used as reference scaling function to build all nuclear
responses, within SuSAv2 we use three RMF-based reference
scaling functions (which will be indicated with the symbol f̃ ):
one for the transverse set, one for the longitudinal isovector
set, and another one to describe the longitudinal isoscalar
scaling function in electron scattering. This is consistent with
the study of the shape of the scaling functions discussed in the
previous section, where three different sets of scaling functions
emerged.

We employ the experimental scaling function f ee′
L,exp as

guide in our choices for the reference ones. In Fig. 7 we
display the RMF longitudinal scaling function, fL, for several
representative values of q. Notice that the functions have been
relocated by introducing an energy shift (see later) so that the
maximum is at ψ ′ = 0. It appears that scaling of the first kind
is not perfect and some q dependence is observed. Although
all the curves are roughly compatible with the experimental
error bars, the scaling function that produces the best fit to the
data corresponds to q ≈ 650 MeV/c. This is the result of a χ2

fit to the 25 experimental data of f ee′
L,exp, as illustrated in the

inner plot in Fig. 7.
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mentum transferred (see legend). The scaling functions have been
shifted to place the maximum at ψ ′ = 0. In the inset smaller plot the
reduced χ 2, defined as χ 2/25 = 1

25

∑25
i=1[(f ee′

L,exp,i − f RMF
L,i )/σ exp

L,i ]2,
where σ

exp
L,i are the errors of the experimental data, is presented versus

q. The minimum χ 2 is around q = 650 MeV/c. Data from Ref. [9].
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According to this result, we identify the reference scaling
functions with f

T =1,ee′
L , f T =0,ee′

L , and f
T =1,ee′
T evaluated within

the RMF model at q = 650 MeV/c and relocated so that the
maximum is at ψ ′ = 0 (we account for the energy shift later):

f̃T ≡ f
T =1,ee′
T

∣∣RMF
q=650, (11)

f̃L,T =1 ≡ f
T =1,ee′
L

∣∣RMF
q=650, (12)

f̃L,T =0 ≡ f
T =0,ee′
L

∣∣RMF
q=650. (13)

Thus, by construction, the (e,e′) longitudinal scaling function
built within SuSAv2 is fL|SuSAv2 = fL|RMF

q=650 ≈ f ee′
L,exp. To

work with these reference scaling functions we need analytical
expressions for them. To that end, we have used a skewed-
Gumbel function which depends on four parameters. The
expressions that parametrize the reference scaling functions
are presented in Appendix B.

The next step before building the responses [see
Eqs. (2)–(9)] is to define the rest of scaling functions starting
from the reference ones. According to the third assumption for
the construction of SuSAv2, we define

f
V V,ν(ν̄)
L (q) = μ

V V,ν(ν̄)
L (q)f̃L,T =1, (14)

f
V V,ν(ν̄)
T (q) = μ

V V,ν(ν̄)
T (q)f̃T , (15)

f
AA,ν(ν̄)
T (q) = μ

AA,ν(ν̄)
T (q)f̃T , (16)

f
V A,ν(ν̄)
T ′ (q) = μ

V A,ν(ν̄)
T (q)f̃T , (17)

where we have introduced the ratios μ defined as

μ
V V,ν(ν̄)
T (q) ≡ f

V V,ν(ν̄)
T (q)

/
f

T =1,ee′
T (q), (18)

μ
AA,ν(ν̄)
T (q) ≡ f

AA,ν(ν̄)
T (q)

/
f

T =1,ee′
T (q), (19)

μ
V A,ν(ν̄)
T ′ (q) ≡ f

ν(ν̄)
T ′ (q)

/
f

T =1,ee′
T (q), (20)

for the transverse set and

μ
V V,ν(ν̄)
L (q) ≡ f

V V,ν(ν̄)
L (q)/f T =1,ee′

L (q) (21)

for the longitudinal one.
From the results of these ratios, presented in Fig. 8, it

emerges that one can assume μ
V V,ν(ν̄)
T (q) ≈ 1, with an error

of the order of ∼1%. The same assumption could be made
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FIG. 8. (Color online) Ratios of transverse scaling functions.

for μ
ν(ν̄)
T ′ (q) and μ

AA,ν(ν̄)
T (q) but in this case the error averages

to ∼3% and ∼7%, respectively. Regarding the longitudinal
isovector set, although not shown, one gets μ

V V,ν(ν̄)
L ≈ 1 with

an error of the order ∼1%.
Therefore, it is a good approximation to set all of the μ

ratios equal to unity in Eqs. (14)–(17).
In summary, within SuSAv2 we assume f

V V,ν(ν̄)
T =

f
AA,ν(ν̄)
T = f

V A,ν(ν̄)
T ′ = f̃T and f

V V,ν(ν̄)
L = f̃L. Notice that be-

cause f
T =0,ee′
T and f

AA,ν(ν̄)
CC,CL,LL are not defined (see Sec. II A)

we also assume f
T =0,ee′
T = f̃L,T =1 and f

AA,ν(ν̄)
CC,CL,LL = f̃L,T =1.

Finally, to implement assumption number 4 of the model,
namely, the disappearance of FSI at high q, we build the
SuSAv2 L and T scaling functions as linear combinations of
the RMF-based and RPWIA reference scaling functions,

FT =0,1
L ≡ cos2 χ (q)f̃ T =0,1

L + sin2 χ (q)f̃ RPWIA
L ,

(22)
FT ≡ cos2 χ (q)f̃T + sin2 χ (q)f̃ RPWIA

T ,

where χ (q) is a q-dependent angle given by

χ (q) ≡ π

2
(1 − {1 + exp [(q − q0)/w0]}−1), (23)

with q0 = 800 MeV/c and w0 = 200 MeV. The reference
RPWIA scaling functions, f̃ RPWIA

K , are evaluated at q =
1100 MeV/c, while the reference RMF scaling functions, f̃K ,
are evaluated at q = 650 MeV/c (see discussion in Sec. II).
The explicit parametrization of f̃ RPWIA

K is given in Appendix B.
With this procedure we get a description of the responses based
on RMF behavior at lower q, while for higher momentum
transfers it mimics the RPWIA trend. The transition between
RMF and RPWIA behaviors occurs at intermediate q values,
namely, ∼q0, in a region of width ∼w0.

The response functions [see Eqs. (2) and (4)–(9)] are simply
built as

Ree′
L (q,ω) = 1

kF

[FL,T =1(ψ ′)GT =1
L (q,ω)

+FL,T =0(ψ ′)GT =0
L (q,ω)

]
, (24)

Ree′
T (q,ω) = 1

kF

FT (ψ ′)
[
GT =1

T (q,ω) + GT =0
T (q,ω)

]
, (25)

R
V V,ν(ν̄)
L (q,ω) = 1

kF

FL,T =1(ψ ′)GV V
L (q,ω), (26)

R
AA,ν(ν̄)
CC (q,ω) = 1

kF

FL,T =1(ψ ′)GAA
CC(q,ω), (27)

R
AA,ν(ν̄)
CL (q,ω) = 1

kF

FL,T =1(ψ ′)GAA
CL(q,ω), (28)

R
AA,ν(ν̄)
LL (q,ω) = 1

kF

FL,T =1(ψ ′)GAA
LL (q,ω), (29)

R
ν(ν̄)
T (q,ω) = 1

kF

FT (ψ ′)
[
GV V

T (q,ω), + GAA
T (q,ω)

]
(30)

R
ν(ν̄)
T ′ (q,ω) = 1

kF

FT (ψ ′)GV A
T ′ (q,ω). (31)

Furthermore, to reproduce the peak position of RMF
and RPWIA scaling functions, discussed in Sec. II B,
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within SuSAv2 we consider a q-dependent energy shift,
namely, Eshift(q). This quantity modifies the scaling variable
ψ(q,ω) −→ ψ ′(q,ω,Eshift) as described in Appendix A. In
particular, we build this function Eshift(q) from the results
of the RMF and RPWIA models presented in Fig. 5. Thus,
Eshift(q) for the reference RMF scaling function f̃T [ψ ′(Eshift)]
is the parametrization of the brown dot-dot-dashed line in the
panel (a) of Fig. 5. The same procedure is used to parametrize
Eshift(q) corresponding to the f̃L,T =1 and f̃L,T =0, but in this
case using, as an average, the blue dot-dot-dashed line from the
panel (b) of Fig. 5. Moreover, for the RPWIA case we use for
the longitudinal and transverse responses the corresponding
RPWIA Eshift(q) curves shown in Fig. 5.

Notice that for q � 300–350 MeV/c it is difficult to extract
the peak position of the RMF scaling function from the data
so we have set a minimum shift energy, Eshift = 10 MeV. This
choice of Eshift(q) depending on the particular q-domain region
considered is solely based on the behavior of the experimental
cross sections and their comparison with our theoretical
predictions (see results in next sections). In the past we have
considered a fixed value of Eshift (different for each nucleus) to
be included within the SuSA model to fit the position of the QE
peak for some specific q-intermediate values. Here we extend
the analysis to very different kinematics covering from low
to much higher q values. However, the RMF model leads the
cross section to be shifted to higher values of the transferred
energy. This shift becomes increasing larger for higher q values
as a consequence of the strong, energy-independent, highly
repulsive potentials involved in the RMF model. Comparison
with data (see the results in the next sections) shows that the
shift produced by RMF is too large. Moreover, at very high q
values, one expects FSI effects to be less important and lead
to results that are more similar to those obtained within the
RPWIA approach. This is the case when FSIs are described
through energy-dependent optical potentials. Therefore, as
already mentioned, our choice for the functional dependence of
Eshift(q) is motivated as a compromise between the predictions
of our models and the comparisons with data.

IV. COMPARISON WITH ELECTRON-SCATTERING DATA

In this section we present a systematic comparison of
total inclusive 12C (e,e′) experimental cross sections and
the predictions for the QE process within RMF, SuSA, and
SuSAv2 models. As mentioned, data correspond to the total
inclusive cross section which includes contributions from
several channels, mainly: QE scattering, inelastic scattering,
many-nucleon emission, etc. The models presented in this
work aim to describe only the QE process. Therefore, one
expects that the models do not reproduce the total inclusive
experimental data corresponding to kinematical situations in
which non-QE contributions play some role. Thus, the main
interest of the systematic analysis presented in this section is
the comparison between SuSAv2 predictions and those from
the SuSA and RMF models. Full analyses of the inclusive
(e,e′) cross section (including descriptions of QE and non-QE
contributions) have been presented with some success in the
past [10,11,21]. We plan to complete the description of the
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FIG. 9. (Color online) Comparison of inclusive 12C(e,e′) cross
sections and predictions of the RMF (red solid lines), SuSA (green
dashed lines), and SuSAv2 (brown dot-dashed lines) models (see text
for details). The set of panels corresponds to low q values. Data taken
from Ref. [22].

inclusive process within the context of the SuSAv2 model, as
was made in Refs. [10,11] within SuSA, in the near future.

In Figs. 9–11 we present the comparison of the (e,e′)
experimental data and models. Owing to the large amount
of available data on 12C(e,e′) at different kinematics (see
Refs. [22,23]) in these three figures we only show some
representative examples. Each figure is labeled by the incident
electron energy, εi (in MeV), the scattering angle, θe, and the
transferred momentum corresponding to the center of the QE
peak, q (in MeV/c). Pauli blocking has been included in the
SuSA and SuSAv2 models following the procedure described
in Refs. [24,25]. In Appendix C we present a comparison of
the models (SuSA and SuSAv2) and data when PB is or is not
included. The panels in Figs. 9–11 are organized according to
the value of the transferred momentum (at the center of the QE
peak) in three sets: low q (from q = 238 to q = 333 MeV/c)
in Fig. 9, medium q (from q = 401 to q = 792 MeV/c) in
Fig. 10, and high q (from q = 917 to q = 3457 MeV/c)
in Fig. 11. The only phenomenological parameters entering
in the calculation are the Fermi momentum kF and the energy
shift Eshift. For these we use kF = 228 MeV/c (see Ref. [7])
in both SuSA and SuSAv2 models. A constant energy shift
of 20 MeV is employed in SuSA [7], while a q-dependent
function, the one described in Sec. III, is used for Eshift in the
SuSAv2 model.

We begin commenting on the low-q panels presented in
Fig. 9. The main contributions to the cross section from
non-QE processes such as inelastic processes contributions
(
 resonance) and MEC, are very small, even negligible, in
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FIG. 10. (Color online) Continuation of Fig. 9. The set of panels
corresponds to medium q values.

this low-q region. In spite of that, when the transferred energy
is small (ω � 50–60 MeV) other processes such as collective
effects contribute to the cross section, making questionable
the treatment of the scattering process in terms of IA-based
models. This could explain, in part, the general disagreement
between models and data in that ω region in panels (a), (b),
and (c).
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FIG. 11. (Color online) Continuation of Fig. 9. The set of panels
corresponds to high q values.

Some clarifications are called for regarding the RMF results
in Fig. 9, where sharp resonances appear at very low ω values.
These correspond to 1p1h excitations with the phase shift of a
given partial wave going through 90◦. With more complicated
many-body descriptions, these sharp features are smeared out.

In summary, to test the goodness of the models in the
kinematical situation of Fig. 9, one should focus on the study
of the tails of the cross sections where large-enough ω values
(ω � 50–60 MeV) are involved. There, one observes that
SuSA predictions are clearly overshifted to high ω values
while RMF and SuSAv2 models fit the data reasonably well. In
addition, as expected, SuSA results are systematically below
SuSAv2 and RMF ones at the QEP.

We now discuss the results for medium-q values presented
in Fig. 10. First of all, one should mention that for the
kinematics of this figure, in addition to the QE process, non-QE
contributions are essential to describe the experimental cross
sections. For instance, in panels (f), (g), and (h) the 
 peak
appears clearly defined at ω values above the QE peak. In
panel (e) one sees that in the region around the center of the
QE peak, the RMF prediction is above the SuSAv2 one, being
closer to the experimental data. This is consistent with the
behavior of the RMF scaling function studied in Sec. II (see
Fig. 4), namely, the peak height of the RMF scaling functions
increases for decreasing q values.

If the main non-QE contributions are not included in the
modeling it is hard to conclude which model is better to
reproduce the purely QE cross section. However, it seems
reasonable to conclude that SuSAv2 improves the agreement
with data compared to SuSA. For instance, in the situation of
panel (e), it would be needed that non-QE processes would
contribute more than 20% to the total cross section for SuSA
to fit the height of the data around the center of the QE peak.
A 20% fraction of the cross section linked to 
 resonance and
MEC contributions is probably too much for that kinematics.
Similar comments and conclusions apply to the results in panel
(d) of Fig. 9.

For q values close to 650 MeV/c [panels (f) and (g)] RMF
and SuSAv2 produce very similar results because of the way
in which SuSAv2 has been defined (see Sec. III). For higher
q values, q � 792 MeV/c [(h) panel], SuSAv2 and RMF
predictions begin to depart from each other. In particular, RMF
results tend to shift the peak to higher ω values and to place
more strength in the tail, while SuSAv2 cross sections tend to
be more symmetrical owing to the increasing dominance of
the RPWIA scaling behavior (see Sec. III).

This difference is more evident for higher q values, as
observed in panels (j)–(l) of Fig. 11. It is important to point
out that for the kinematics presented in Fig. 11 the non-QE
contributions are not only important but they become dominant
in the cross sections. This is the case presented in panels (k)
and (l), where the QE peak is not even visible in the data.

We could summarize the main conclusions from the present
comparison of models and data as follows.

(i) Regarding the enhancement of the transverse response,
RT , in SuSAv2 compared with SuSA. In the absence
of modeling of non-QE contributions, the most clear
indications that support the SuSAv2 assumptions arise
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from the comparison with data at kinematical situations
in which non-QE effects are supposed to be small
[panels (e) and (d) in Figs. 9 and 10, respectively].

(ii) Regarding the energy shift study. Within the SuSA
model we have used a constant energy shift of
20 MeV/c. On the one hand, from the comparison
with the low-q set of experimental data, Fig. 9, one
concludes that 20 MeV is too large a shift. On the
other hand, the comparison with the high-q set of data,
Fig. 11, suggests that 20 MeV is probably too small.
Then one is led to conclude that a constant energy shift
is not the best option to reproduce (e,e′) data. These
results support the idea of introducing a q-dependent
energy shift such as we made in the SuSAv2 model. The
theoretical justification of this assumption is discussed
in Sec. III.

V. COMPARISON WITH NEUTRINO AND
ANTINEUTRINO DATA

In recent years a significant amount of charge-changing
quasielastic (CCQE) neutrino and antineutrino cross-section
data have been presented in the literature. In this section, as
in the previous one for the (e,e′) process, we compare the
results of SuSAv2 model with some selected samples from
different experiments: MiniBooNE [26,27], Minerνa [28,29],
and NOMAD [30]. The SuSA predictions are also presented
as reference.

MiniBooNE has measured CCQE cross sections that are
higher than most predictions based on IA. The excess,
at relatively low energy (〈Eν〉 ∼ 0.7 GeV), observed in
MiniBooNE cross sections has been interpreted as evidence
that non-QE processes may play an important role at that
kinematics [31–33]. It is important to point out that in the
experimental context of MiniBooNE, “QE” events are defined
as those from processes or channels containing no mesons in
the final state. Thus, in principle, in addition to the purely QE
process, which in this work refers exclusively to processes
induced by one-body currents (IA), meson-exchange current
effects (induced by two-body or many-body currents) should
also be taken into account for a proper interpretation of data.

In Figs. 12 and 13 the double-differential (ν,μ−) and (ν̄,μ+)
cross sections measured by the MiniBooNE Collaboration are
compared with SuSAv2 (solid blue line) and SuSA (dashed
red line) predictions. Panels (a) and (b) correspond to a muon-
scattering angle of ∼63 ◦ and ∼32 ◦, respectively. As observed,
the SuSAv2 cross section is significantly larger than the SuSA
one, although it still falls below the MiniBooNE data. Thus,
there is still room for MEC contributions. In Ref. [34] the
RMF model is compared with the same set of data as shown
in Figs. 12 and 13. In general, one observes that RMF and
SuSAv2 models produce almost identical results [as happened
in (e,e′) for intermediate q values].

In the NOMAD experiment the incident neutrino (antineu-
trino) beam energy is much larger, with a flux extending
from Eν = 3 to 100 GeV. In this case, one finds that
data are in reasonable agreement with predictions from IA
models [35,36]. Notice that the large error bars of these data
do not allow for further definitive conclusions. In Fig. 14
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FIG. 12. (Color online) MiniBooNE double-differential (ν,μ−)
cross section data [26] are compared with SuSA (dashed red line)
and SuSAv2 (solid blue line) predictions. In panel (a) the scattering
angle of the muon is 0.4 < cos θ < 0.5, while in panel (b) 0.8 <

cos θ < 0.9.

we present the CCQE total cross section for neutrino [panel
(a)] and antineutrino [panel (b)] reactions. Experimental data
from NOMAD and MiniBooNE are compared with SuSA and
SuSAv2. SuSAv2 improves the agreement with the NOMAD
data, being, in general, closer to the center of the bins. The
extension of the RMF model to very high energies requires at
first complicated and very long time-consuming calculations.
In this sense, the advantage of SuSAv2 is that it can be
easily and rapidly extended up to very high neutrino energies.
Although not shown here, preliminary results evaluated with
the RMF model at NOMAD kinematics [37] are proved to be
very similar to the SuSAv2 ones.

In the MINERνA experiment the neutrino energy flux
extends from 1.5 to 10 GeV and is peaked at Eν ∼ 3 GeV,
i.e., in between MiniBooNE and NOMAD energy ranges.
Therefore, its analysis can provide useful information on
the role played by meson-exchange currents in the nuclear
dynamics. In a recent work [25] it was found that, contrary to
the comparison with the MiniBooNE data, the two IA models
analyzed (RMF and SuSA) provide a good description of the
MINERνA data without the need of significant contributions
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FIG. 13. (Color online) As in Fig. 12, but for the antineutrino-
induced reaction, (ν̄,μ+). Data taken from [27].

from MEC. In Fig. 15 we present the single-differential cross
section (dσ/dQ2

QE), measured by MINERνA, as a function
of the reconstructed four-momentum transfer squared, Q2

QE

(see Refs. [28,29] for explicit definition of Q2
QE). The SuSA

and SuSAv2 results are compared with MINERνA data. In
spite of the enhancement with respect to SuSA, SuSAv2
is not only consistent, but it also improves the agreement
with MINERνA data. In fact, RMF and SuSAv2 models
produce very close results (RMF predictions are presented
in Ref. [25]). Thus, contrary to the MiniBooNE situation,
the comparison of MINERνA data and IA-based models, in
particular, RMF and SuSAv2, leaves little room for MEC
contributions.

A further general comment on the previous results is in
order: The difference between SuSA and SuSAv2 is larger
for neutrino than for antineutrino results. This occurs because
of the cancellation occurring between RT (positive) and RT ′

(negative) responses in antineutrino cross sections. Notice that
the transverse responses are substantially enhanced in SuSAv2
compared with SuSA.

In summary, we find that SuSAv2 compared with the SuSA
model improves the comparison with neutrino and antineutrino
data. Additionally, SuSAv2 (as SuSA) can easily make predic-
tions at kinematics (very high energies) in which other more
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FIG. 14. (Color online) (a) CCQE (ν,μ−) cross section per nu-
cleon is presented as a function of the incident neutrino energy, Eν .
Data from MiniBooNE [26] and NOMAD [30] are compared with
SuSA (dashed red line) and SuSAv2 (solid blue line) predictions.
(b) As in panel (a), but now for the antineutrino-induced reaction,
12C(ν̄,μ+).

microscopic-based models, such as RMF, require additional
assumptions and demanding, time-consuming calculations.

VI. CONCLUSIONS

The SuSA model, based on the scaling behavior exhibited
by (e,e′) data in the longitudinal channel, has been extensively
used in the past to explain not only electron scattering, but also
neutrino reactions. The basic idea of SuSA is the existence of
a universal scaling function, the one ascribed to longitudinal
(e,e′) data, to be applied to any other process. Hence, SuSA
makes use of the same scaling function for the two channels,
longitudinal and transverse, involved in QE electron-scattering
reactions, as well as for the whole set of responses that enter
in charged-current neutrino scattering processes.

However, the RMF model provides a description of the
scattering reaction mechanism, including the role played by
FSI. The RMF model leads to a longitudinal scaling function
in accordance with data, and hence, also in agreement with
the SuSA result. However, contrary to the main assumption
considered by SuSA, namely, the existence of only one
universal scaling function, the RMF model provides a
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FIG. 15. (Color online) CCQE neutrino (a) and antineutrino (b)
MINERνA data are compared with SuSA (dashed red lines) and
SuSAv2 (solid blue lines) predictions. Data taken from Refs. [28,29].

transverse scaling function that is higher by ∼20% than
the longitudinal one. In other words, scaling of the zeroth
kind is not fulfilled by RMF. This result also seems to be in
accordance with the preliminary analysis of data that shows
the pure QE transverse channel to lead to a scaling function
exceeding the longitudinal one by an amount, ∼20%–25%,
similar to the one shown by the RMF results.

The analysis of neutrino reactions also introduces basic dif-
ferences with the electron case. Whereas in the latter, responses
contain isoscalar and isovector contributions, in the former,
the responses are purely isovector. Moreover, not only do pure
vector-vector responses contribute to neutrino processes, but
so do axial-axial and the interference axial-vector ones. All
of these results, in addition to the preliminary analysis of
the separate QE longitudinal and transverse responses, may
introduce some doubts about the existence of a unique scaling
function valid for all processes.

In this work we have pursued this problem and have
extended the SuSA model by taking into account the results

provided by the RMF approach. Hence, we study in detail
RMF scaling functions corresponding to all channels, and from
this we select the minimum set of scaling functions, named
reference scaling functions, that allow us to construct the cross
section for electron- and neutrino-scattering reactions. The
new model, called SuSAv2, takes care of the enhancement of
the (e,e′) transverse response compared with the longitudinal
one, as well as the general behavior shown by the functions
ascribed to neutrino reactions.

SuSAv2 is based on a “blend” between the properties of
the RMF and RPWIA responses. The former appears to do
well at low to intermediate values of the momentum transfer,
for instance, yielding both an asymmetric scaling function
and the T/L differences observed in electron-scattering data.
However, because of the strong energy-independent scalar and
vector potentials involved, the RMF model does less well at
high values of q, where the energy shift is seen to be too
strong and the high-energy tail in the RMF scaling function is
likely too large. The RPWIA, on the other hand, does not work
well at low to intermediate momentum transfers and, in fact,
yields results that are not very different from those of the RFG,
which are known to be too symmetrical and not to contain the
T/L differences seen in both the RMF results and in electron-
scattering data. What SuSAv2 attempts to do is provide a
crossover from the low to the intermediate momentum transfer
regime (where the RMF results are employed) to the high-q
regime (where the results revert to those of the RPWIA).
A particular, reasonable “blending” function has been used,
although the specific parametrization assumed is not critical.
Indeed, when updated 2p-2h MEC responses and updated
representations of inelastic contributions are incorporated (see
below) it will be appropriate to make detailed fits to existing
electron-scattering data and at that point one can refine the
determination of the parameters used in this initial study.

We have applied the new SuSAv2 model to the description
of electron and neutrino scattering, and have proved that
SuSAv2 predictions are higher than the SuSA ones and are
closer to data. This is so for electron scattering as well as
for neutrino reactions. However, in the latter, theory still
underestimates data in most of the cases, in particular, for
the kinematics corresponding to the MiniBooNE experiment.
This outcome is similar to the one already observed for the
RMF results.

The SuSAv2 model incorporates some basic ingredients not
taken into account within SuSA; hence, it clearly improves
its reliability to the description of scattering processes, being
at the same time a model that is easy to implement in the
“generator codes” used to analyze the experiments. More-
over, its application to very high energies does not involve
particularly demanding calculations, in contrast to the RMF
model, which may can complex and long, time-consuming
calculations.

Finally, a comment is in order concerning the ingredients
incorporated by SuSAv2 (likewise for SuSA and RMF). This
is a model based exclusively on the IA. Hence, ingredients
beyond the IA, i.e., two-body meson-exchange currents,
inelastic contributions, etc., should be added to the model.
Work along these lines is presently under way, as is the
application of SuSAv2 to different experimental kinematics:

035501-12



EXTENSIONS OF SUPERSCALING FROM RELATIVISTIC . . . PHYSICAL REVIEW C 90, 035501 (2014)

Argoneut, T2K, etc., These studies will be presented in a
forthcoming publication.
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APPENDIX A: DEFINITION OF THE SCALING
FUNCTIONS

Within the context of the RFG model, the scaling variable
is defined as (see Refs. [4–6])

ψ ′ ≡ 1√
ξF

λ′ − τ ′√
(1 + λ′)τ ′ + κ

√
τ ′(τ ′ + 1)

, (A1)

where ξF =
√

1 + (kF /M)2 − 1, κ = q/(2M), λ′ =
ω′/(2M), and τ = κ2 − λ′2. M is the nucleon mass and
kF is the Fermi momentum [7]. Additionally, we have
introduced the variable ω′ = ω − Eshift. The quantity Eshift,
which is different for each target nucleus [7], is introduced
to account phenomenologically for the shift observed in the
QE peak when the cross section is plotted as a function of
ω. Trivially, if Eshift = 0 one recovers the unshifted scaling
variable ψ .

1. Electromagnetic scaling functions

For N = Z nuclei the isovector (T = 1) and isoscalar (T =
0) EM longitudinal, L, and transverse, T , scaling functions are

f
T =1,0
L,T ≡ kF

R
T =1,0
L,T (κ,λ)

G
T =1,0
L,T (κ,λ)

. (A2)

We have introduced the elementary cross sections

G
T =1,0
L,T (κ,λ) = 1

2κDU
T =1,0
L,T (κ,λ), (A3)

where

U
T =1,0
L (κ,λ) = κ2

τ

[
H

T =1,0
E + W

T =1,0
2 


]
, (A4)

U
T =1,0
T (κ,λ) = 2τH

T =1,0
M + W

T =1,0
2 
, (A5)

with

H
T =1,0
E,M = Z + N

4

(
G

T =1,0
E,M

)2
, (A6)

W
T =1,0
2 = 1

1 + τ

[
H

T =1,0
E + τH

T =1,0
M

]
. (A7)

Z and N are the number of protons and neutrons in the target
nucleus, respectively. Finally,


 ≡ ξF (1 − ψ2)

[√
τ (τ + 1)

κ
+ ξF

3

τ

κ2
(1 − ψ2)

]
, (A8)

D ≡ 1 + 1

2
ξF (1 + ψ2). (A9)

Note that Pauli-blocking effects have been neglected here.
Notice that we have introduced the isoscalar and isovector

EM form factors, G
T =1,0
E,M , which in terms of the more familiar

proton and neutron ones are

GT =0
E,M = G

p
E,M + Gn

E,M, (A10)

GT =1
E,M = G

p
E,M − Gn

E,M. (A11)

In this work, the Gari-Krümpelmann extended (GKex) vector
meson dominance (VMD) based model [38–40] has been used
for the proton and neutron EM form factors.

The total longitudinal, L, and transverse, T , scaling
functions are defined as usual,

fL,T ≡ kF

RL,T (κ,λ)

GL,T (κ,λ)
, (A12)

where GL,T (and UL,T ) are built as above but with the
following definition of HE,M and W2:

HE,M = Z
(
G

p
E,M

)2 + N
(
Gn

E,M

)2
(A13)

W2 = 1

1 + τ
[HE + τHM ]. (A14)

2. Charge-changing neutrino and antineutrino scaling functions

In this case the current is purely isovector (T = 1). As usual,
one defines

f
ν(ν̄)
K ≡ kF

R
ν(ν̄)
K (κ,λ)

GK (κ,λ)
, (A15)

where K = L,T ,CC,CL,LL,T ′ for V V , AA, and V A cases.
The elementary cross sections are

GK (κ,λ) = 1

2κDUK (κ,λ), (A16)

which are defined in terms of

UV V
L = κ2

τ

[
HT =1

E + WT =1
2 


]
, (A17)

UV V
T = 2τHT =1

M + WT =1
2 
, (A18)

UAA
CC = κ2

τ

[(
λ

κ

)2

H ′
A + HA


]
, (A19)

UAA
LL = κ2

τ

[
H ′

A +
(

λ

κ

)2

HA


]
, (A20)

UAA
CL = −κ2

τ

(
λ

κ

)
[H ′

A + HA
], (A21)

UAA
T = HA[2(1 + τ ) + 
], (A22)

UV A
T ′ = 2

√
τ (1 + τ )HV A[1 + 
′]. (A23)
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The functions HT =1
E,M are given in Eq. (A6), but in this case

the factor (Z + N ) should be replaced with N , which is N
or Z for neutrino or antineutrino CC reactions. We have also
introduced the functions

HA = N [
GT =1

A

]2
, (A24)

H ′
A = N [G′

A]2, (A25)

HV A = NGT =1
M GT =1

A , (A26)

with

G′
A ≡ GT =1

A − τGT =1
P = 1

1 + |Q2|/m2
π

GT =1
A (A27)

and GT =1
A = gA(1 + |Q2|/M2

A)−2, with gA = 1.2695, mπ the
pion mass, and MA = 1.03 GeV.

Finally, the quantity 
′ which appears in Eq. (A23) is
defined as


′ = 1

κ
√

1 + 1/τ

1

2
ξF (1 − ψ2). (A28)

Note that Pauli-blocking effects have also been neglected here.

APPENDIX B: PARAMETERIZATION OF THE
REFERENCE SCALING FUNCTIONS

In this Appendix we summarize the parametrization of
the reference scaling functions. The skewed-Gumbel (sG)
function is

fsG = S(ν0; ψ)fG(ψ0,σ,β; ψ), (B1)

where

S(ν0; ψ) = 2

1 + eν/ν0
, (B2)

fG(ψ0,σ,β; ψ) = β

σ
eν exp[−eν], (B3)

ν = −
(

ψ − ψ0

σ

)
. (B4)

In Table I are shown the values of the free parameters that
fit the reference scaling functions f̃L,T =1, f̃L,T =0, and f̃T .
In Fig. 16 these reference scaling functions are presented as
functions of the scaling variable ψ .

The reference RPWIA scaling functions are

f̃ RPWIA
L,T = 2(a3)L,T

1 + exp
(

ψ−a1

a2

) exp

[
− (ψ − a4)2

a5

]
, (B5)

with a1 = −0.892 196, a2 = 0.1792, (a3)L = 6070.85,
(a3)T = 6475.57, a4 = 1.740 49, a5 = 0.645 59.

TABLE I. Values of the parameters that characterize the sG
reference scaling functions.

f̃L,T =1 f̃L,T =0 f̃T

β 0.8923 1.0361 0.9425
σ 0.6572 0.5817 0.7573
ψ0 0.1708 0.022 17 − 0.4675

1/ν0 − 0.7501 − 0.1163 2.9381
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FIG. 16. (Color online) Reference scaling functions in the
SuSAv2 model.

APPENDIX C: PAULI BLOCKING IN SuSA AND SuSAv2

In this Appendix we show the effects of Pauli blocking (PB)
in the SuSA and SuSAv2 models. The procedure employed
to introduce PB in the SuSA model was already presented
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FIG. 17. (Color online) SuSA with and without Pauli Blocking
is compared with data. Eshift = 10 MeV has been employed.
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in Ref. [25]. The method, proposed in Ref. [24], consists
of building a new scaling function by subtracting from the
original one, f [ψ(ω,q)], its “mirror” function, f [ψ(−ω,q)]
(see Ref. [25] for details). In the RFG this procedure yields
exactly the same result as usually seen when introducing Pauli
blocking via θ functions. However, the method can also be
applied to models, like SuSA, which are not built starting
from a momentum distribution. The same procedure is used in
this work to introduce PB in the SuSAv2 model.

We comment on Fig. 17, where SuSA results with and
without PB are compared with a few sets of data at the
kinematics in which PB effects are significant, i.e., very low q.
To fit the position of the peak better, in this case we have used
a shift energy of 10 MeV in the SuSA model (compared with
the 20 MeV used in Figs. 9–11). This makes the comparison
with data easier and allows us to focus on PB effects, namely,
the width and peak height of the cross sections. In general, we
conclude that the agreement between SuSA and data improves
when PB is introduced. SuSA without PB (green dashed)
produces cross sections that are too wide, while SuSA with PB
(brown) provides narrower cross sections in better agreement
with data. This is particularly true, for instance, in panels (a)
and (b) in Fig. 17. The same comments apply to Fig. 18, where
SuSAv2 with and without PB is compared with the same set
of low-q data. The lowest energy transfer data, corresponding
to the excitation of resonant and collective states, cannot be
described by any of the present models.

A clear difference between SuSA and SuSAv2 (Figs. 17
and 18) is that the latter clearly overestimates the data in the
region below and close to the peak. However, in all cases the
maximum is placed at the region ω � 50–60 MeV where, as
discussed in Sec. IV, the validity of the models based on IA is
questionable and no definitive conclusions can be drawn based
on comparison of model and data in this ω region.
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FIG. 18. (Color online) SuSAv2 with and without Pauli Blocking
is compared with data.
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