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We present a fast and efficient method to compute the inclusive two-particle two-hole (2p–2h) 
electroweak responses in the neutrino and electron quasielastic inclusive cross sections. The method is 
based on two approximations. The first neglects the motion of the two initial nucleons below the Fermi 
momentum, which are considered to be at rest. This approximation, which is reasonable for high values 
of the momentum transfer, turns out also to be quite good for moderate values of the momentum transfer 
q � kF . The second approximation involves using in the “frozen” meson-exchange currents (MEC) an 
effective �-propagator averaged over the Fermi sea. Within the resulting “frozen nucleon approximation”, 
the inclusive 2p–2h responses are accurately calculated with only a one-dimensional integral over the 
emission angle of one of the final nucleons, thus drastically simplifying the calculation and reducing the 
computational time. The latter makes this method especially well-suited for implementation in Monte 
Carlo neutrino event generators.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The analysis of modern accelerator-based neutrino oscillation 
experiments requires good control over the intermediate-energy 
neutrino-nucleus scattering cross section [1,2]. In particular the 
importance of multi-nucleon events has been suggested in many 
calculations of charge-changing quasielastic cross sections (νμ, μ), 
at typical neutrino energies of ∼1 GeV [3–9]. The contribution of 
two-particle–two-hole (2p–2h) excitations is now thought to be 
essential for a proper description of data [10–19]. Thus a growing 
interest has arisen in including 2p–2h models into the Monte Carlo 
event generators used by the neutrino collaborations [20–23].

The only 2p–2h model implemented up to date in some of 
the Monte Carlo neutrino event generators corresponds to the so-
called ‘IFIC Valencia model’ [6,9], which has been incorporated in 
GENIE, NuWRO and NEUT [24–26]. There are also plans to incor-
porate the ‘Lyon model’ [3] in GENIE, while phenomenological ap-
proaches like the effective transverse enhancement model of [27]
are implemented, for instance, in NuWro generator [25].
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One of the main problems to implementing the 2p–2h models 
is the high computational time. This is due to the large num-
ber of nested integrals involved in the evaluation of the inclusive 
hadronic tensor with sums over the final 2p–2h states. To speed 
up the calculations, several approximations can be made, such 
as choosing an average momentum for the nucleons in the local 
Fermi gas [6], neglecting the exchange matrix elements, or reduc-
ing the number of integrations to two nested integrals by perform-
ing a non-relativistic expansion of the current operators [28]. The 
latter approach is only useful for some pieces of the elementary 
2p–2h response.

In this work we present a fast and very efficient method to cal-
culate the inclusive 2p–2h responses in the relativistic Fermi gas 
model (RFG). This approach, denoted as the frozen nucleon approx-
imation, was first explored in [29] but restricted to the analysis of 
the 2p–2h phase-space. Here it is extended to the evaluation of the 
full hadronic tensor assuming that the initial momenta of the two 
struck nucleons can be neglected for high enough energy and mo-
mentum transfer, q > kF . The frozen nucleon approximation was 
found to work properly in computing the phase space function for 
two-particle emission in the range of momentum transfers of inter-
est for neutrino experiments with accelerators. Here we investigate 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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the validity of the frozen approximation beyond the phase-space 
study by including the electroweak meson-exchange current (MEC) 
model of [30]. We find that the presence of virtual delta excitations 
requires one to introduce a “frozen” �-propagator, designed by a 
convenient average over the Fermi sea.

The main advantage of the frozen approximation consists in 
reducing the number of nested integrals needed to evaluate the in-
clusive 2p–2h electroweak responses from 7 (full calculation) to 1. 
Thus it is well-suited to computing the 2p–2h neutrino cross sec-
tions folded with the neutrino flux, and it can be of great help in 
order to implement the 2p–2h models in the Monte Carlo codes 
currently available.

The plan of this work is as follows: in section 2 we review 
the formalism of neutrino scattering and describe mathematically 
the frozen approximation approach. In section 3 we validate the 
nucleon frozen approximation by computing the 2p–2h response 
functions and by comparing with the exact calculation. Finally, in 
section 4 we summarize our conclusions.

2. Formalism

2.1. Cross section and hadronic tensor

The double-differential inclusive (νl, l−) or (ν̄l, l+) cross section 
is given by

d2σ

d�′dε′ = σ0

[
Ṽ CC RCC + 2Ṽ C L RC L + Ṽ LL R LL

+ Ṽ T RT ± 2Ṽ T ′ RT ′]
, (1)

where the sign ± is positive for neutrinos and negative for an-
tineutrinos. The term σ0 in Eq. (1) represents the elementary neu-
trino scattering cross section with a point nucleon, while the Ṽ K
are kinematic factors that depend on lepton kinematic variables. 
Their explicit expressions can be found in [31]. The relevant nu-
clear physics is contained in the five nuclear response functions 
R K (q, ω), where q is the momentum transfer, defining the z di-
rection, and ω is the energy transfer. They are defined as suitable 
combinations of the hadronic tensor

RCC = R L = W 00 (2)

RC L = −1

2

(
W 03 + W 30

)
(3)

R LL = W 33 (4)

RT = W 11 + W 22 (5)

R T ′ = − i

2

(
W 12 − W 21

)
. (6)

In this work we compute the inclusive hadronic tensor for two-
nucleon emission in the relativistic Fermi gas, given by

W μν
2p-2h = V

(2π)9

∫
d3 p′

1d3h1d3h2
m4

N

E1 E2 E ′
1 E ′

2

× rμν(p′
1,p′

2,h1,h2) δ(E ′
1 + E ′

2 − E1 − E2 − ω)

× 
(p′
1, p′

2,h1,h2) , (7)

where p′
2 = h1 +h2 +q −p′

1 by momentum conservation, mN is the 
nucleon mass, V is the volume of the system and we have defined 
the product of step functions


(p′
1, p′

2,h1,h2) = θ(p′
2 − kF )θ(p′

1 − kF )θ(kF − h1)θ(kF − h2)

(8)

with kF the Fermi momentum.
Finally the function rμν(p′
1, p

′
2, h1, h2) is the elementary hadron 

tensor for the 2p–2h transition of a nucleon pair with given initial 
and final momenta, summed up over spin and isospin,

rμν(p′
1,p′

2,h1,h2) = 1

4

∑
s,t

jμ(1′,2′,1,2)∗A jν(1′,2′,1,2)A , (9)

which is written in terms of the antisymmetrized two-body cur-
rent matrix elements

jμ(1′,2′,1,2)A ≡ jμ(1′,2′,1,2) − jμ(1′,2′,2,1) . (10)

The factor 1/4 in Eq. (9) accounts for the antisymmetry of the two-
body wave function.

For the inclusive responses considered in this work there is a 
global axial symmetry, so we can fix the azimuthal angle of one 
of the particles. We choose φ′

1 = 0, and consequently the integral 
over φ′

1 gives a factor 2π . Furthermore, the energy delta function 
enables analytical integration over p′

1, and so the integral in Eq. (7)
can be reduced to 7 dimensions (7D). In the “exact” results shown 
in the next section, this 7D integral has been computed numeri-
cally using the method described in [29].

2.2. Frozen nucleon approximation

The frozen nucleon approximation consists in assuming that the 
momenta of the initial nucleons can be neglected for high enough 
values of the momentum transfer. Thus, in the integrand of Eq. (7), 
we set h1 = h2 = 0, and E1 = E2 = mN . We roughly expect this 
approximation to become more accurate as the momentum trans-
fer increases. The integration over h1, h2 is trivially performed and 
the response function R K , with K = CC, C L, LL, T , T ′ , is hence ap-
proximated by

R K
frozen = V

(2π)9

(
4

3
πk3

F

)2 ∫
d3 p′

1
m2

N

E ′
1 E ′

2
rK (p′

1,p′
2,0,0)

× δ(E ′
1 + E ′

2 − 2mN − ω) 
(p′
1, p′

2,0,0) , (11)

where p′
2 = q − p′

1 and rK are the elementary response func-
tions for a nucleon pair excitation, which are defined similarly to 
Eqs. (2)–(6). The integral over p′

1 can be done analytically by using 
the delta function for energy conservation, and the integral over 
φ′

1 gives again a factor of 2π . Thus only an integral over the polar 
angle θ ′

1 remains:

R K
frozen = V

(2π)9

(
4

3
πk3

F

)2

2π

π∫
0

dθ ′
1 sin θ ′

1

×
∑
α=±

m2
N p′

1
2
(p′

1, p′
2,0,0)

E ′
1 E ′

2

∣∣∣ p′
1

E ′
1

− p′
2 ·̂p′

1
E ′

2

∣∣∣ rK (p′
1,p′

2,0,0)

∣∣∣∣∣∣∣
p′

1=p′
1
(α)

(12)

where the sum runs over the, in general two, possible values of 
the momentum of the first particle for given emission angle θ ′

1. 
These are obtained as the positive solutions p′

1
(±) of the energy 

conservation equation

2mN + ω =
√

p′
1

2 + m2
N +

√
(q − p′

1)
2 + m2

N . (13)

The explicit values of the solutions of the above equation can be 
found in the appendix of [29]. Care is needed in performing the 
integral over θ ′

1 because the denominator inside the integral can 
be zero for some kinematics. The quadrature in these cases can be 
done with the methods explained in [29,32].
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Fig. 1. Feynman diagrams for the electroweak MEC model used in this work.

2.3. Electroweak meson-exchange currents

To investigate the validity of the frozen nucleon approximation, 
we have to choose a specific model for the two-body current ma-
trix elements jμ(1′, 2′, 1, 2) entering in the elementary 2p–2h re-
sponse functions, Eqs. (9), (10). Here we use the relativistic model 
of electroweak MEC operators developed in [30]. The MEC model 
can be summarized by the Feynman diagrams depicted in Fig. 1. It 
comprises several contributions coming from the pion production 
amplitudes of [33].

The Seagull current, corresponding to diagrams (a,b), is given 
by the sum of vector and axial-vector pieces

jμsea = [
I±V

]
1′2′,12

f 2
π N N

m2
π

ūs′1(p′
1)γ5/k1 us1(h1)

k2
1 − m2

π

× ūs′2(p′
2)

[
F V

1 (Q 2)γ5γ
μ + Fρ

(
k2

2

)
g A

γ μ

]
us2(h2)

+ (1 ↔ 2) , (14)

where I±V = (I V )x ± i(I V )y corresponds to the ±-components of 
the two-body isovector operator I V = i [τ (1) × τ (2)]. The +(−)

sign refers to neutrino (antineutrino) scattering. The four-vector 
kμ

1 = (p′
1 − h1)

μ is the momentum carried by the exchanged pion 
and Q μ = (ω, q). The π N N ( fπ N N = 1) and axial (g A = 1.26) cou-
plings, and the form factors (F V
1 , Fρ ) have been taken from the 

pion production amplitudes of [33].
The Pion-in-flight current corresponding to diagram (c) is 

purely vector and is given by

jμπ = [
I±V

]
1′2′,12

f 2
π N N

m2
π

F V
1 (Q 2)

(
kμ

1 − kμ
2

)(
k2

1 − m2
π

) (
k2

2 − m2
π

)
× ūs′1(p′

1)γ5/k1 us1(h1)ūs′2(p′
2)γ5/k2 us2(h2) , (15)

where kμ
2 = (p′

2 − h2)
μ is the momentum of the pion absorbed by 

the second nucleon.
The pion-pole current corresponds to diagrams (d,e) and is 

purely axial, given by

jμpole = [
I±V

]
1′2′,12

f 2
π N N

m2
π

Fρ

(
k2

1

)
g A

Q μūs′1(p′
1)/Q us1(h1)

× ūs′2(p′
2)γ5/k2 us2(h2)(

k2
2 − m2

π

) (
Q 2 − m2

π

) + (1 ↔ 2) . (16)

Finally the � current corresponds in Fig. 1 to diagrams (f, g) 
for the forward and (h, i) for the backward � propagations, re-
spectively. The current matrix elements are given by

jμ� = jμ�,F + jμ�,B (17)

jμ�,F = f ∗ fπ N N

m2
π

[
U±

F

]
1′2′,12

ūs′2(p′
2)γ5/k2 us2(h2)

k2
2 − m2

π

× kα
2 ūs′1(p′

1)Gαβ(h1 + Q )�βμ(h1, Q )us1(h1)

+ (1 ↔ 2) (18)

jμ�,B = f ∗ fπ N N

m2
π

[
U±

B

]
1′2′,12

ūs′2(p′
2)γ5/k2 us2(h2)

k2
2 − m2

π

× kβ

2 ūs′1(p′
1)�̂

μα(p′
1, Q )Gαβ(p′

1 − Q )us1(h1)

+ (1 ↔ 2) . (19)

The π N� coupling is f ∗ = 2.13. The forward, U±
F = U F x ± iU F y , 

and backward, U±
B = U Bx ± iU B y , isospin transition operators have 

the following Cartesian components

UFj =
√

3

2

∑
i

(
Ti T

†
j

)
⊗ τi (20)

UBj =
√

3

2

∑
i

(
T j T †

i

)
⊗ τi, (21)

where �T and �T † are the isovector transition operators from isospin 
3
2 to 1

2 or vice-versa, respectively. The +(−) operator is for neu-
trino (antineutrino) scattering.

The �-propagator, Gαβ(P ), is given by

Gαβ(P ) = Pαβ(P )

P 2 − M2
� + iM��� + �2

�

4

, (22)

where Pαβ(P ) is the projector over spin- 3
2 on-shell particles,

Pαβ(P ) = −(/P + M�)

[
gαβ − 1

3
γαγβ − 2

3

Pα Pβ

M2
�

+ 1

3

Pαγβ − Pβγα

M�

]
(23)

and whose denominator has been obtained from the free prop-
agator for stable particles, 1

2 2 , with the replacement M� →

P −M�
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M� − i ��

2 to take into account the finite decay width of the 
� (1232).

The tensor �βμ(P , Q ) in the forward current is the weak N →
� transition vertex – a combination of gamma matrices with vec-
tor and axial-vector contributions:

�βμ(P , Q ) = �
βμ
V (P , Q ) + �

βμ
A (P , Q ) (24)

�
βμ
V (P , Q ) =

[
C V

3

mN

(
gβμ/Q − Q βγ μ

)
+ C V

4

m2
N

(
gβμ Q · (P + Q ) − Q β (P + Q )μ

)
+ C V

5

m2
N

(
gβμ Q · P − Q β Pμ

) + C V
6 gβμ

]
γ5 (25)

�
βμ
A (P , Q ) = C A

3

mN

(
gβμ/Q − Q βγ μ

)
+ C A

4

m2
N

(
gβμ Q · (P + Q ) − Q β (P + Q )μ

)
+ C A

5 gβμ + C A
6

m2
N

Q β Q μ . (26)

For the backward current, we take

�̂μα(P ′, Q ) = γ 0 [
�αμ(P ′,−Q )

]†
γ 0 . (27)

Finally, it is worth noting that the form factors C V ,A
i are taken from 

[33]. We refer to that work for further details of the model.

2.4. The frozen �-propagator

The evaluation of the relevant elementary responses requires 
one to contract the electroweak two-body MEC with themselves 
by spin–isospin summation. This leads to the squares of each of 
the diagrams depicted in Fig. 1 plus all their interferences.

The validity of the frozen nucleon approximation relies on the 
fact that the integrand inside the 2p–2h response is a function that 
depends slowly on the momenta of the two initial nucleons inside 
the Fermi sea. In that case the mean-value theorem applied to the 
resolution of the integrals provides very precise results. This is so 
for all of the diagrams of the MEC except for the forward � dia-
gram, which shows a sharp maximum for kinematics around the 
� peak for pion emission, located at ω =

√
q2 + m2

� − mN . This is 
due to the denominator in the � propagator,

G�(H + Q ) ≡ 1

(H + Q )2 − M2
� + iM��� + �2

�

4

, (28)

where Hμ = (Eh, h) is the momentum of the hole that gets excited 
to a �.

In these cases the integrand changes very significantly with a 
small variation of the momentum of the holes and consequently, 
the frozen approximation cannot properly describe the integrand. 
On the contrary, it only provides a general estimation of the order 
of magnitude. To get rid of these difficulties we have developed a 
prescription to deal with the forward �-propagator appearing in 
Eq. (18). This procedure is based on the use of an effective prop-
agator (“frozen”) for the �, conveniently averaged over the Fermi 
gas. This average is an analytical complex function, which is used 
instead of the “bare” propagator inside the frozen approximation, 
recovering the precision of the rest of diagrams.
The “frozen” prescription amounts to the replacement:

G�(H + Q ) → G frozen(Q ) , (29)

where the frozen denominator is defined by

G frozen(Q ) =
∫

d3hθ(kF − |h|)G�(H + Q )

4
3πk3

F

. (30)

Taking the non-relativistic limit for the energies of the holes 
(Eh 
 mN ), which is justified because hole momenta are below the 
Fermi momentum, itself a value far below the nucleon rest mass, 
we can write:

G frozen(Q ) = 1
4
3πk3

F

∫
d3h θ(kF − |h|)
a − 2 h · q + ib

, (31)

where

a ≡ m2
N + Q 2 + 2mNω − M2

� + �2
�

4
(32)

b ≡ M��� . (33)

Assuming the � width (��) to be constant, we can integrate 
Eq. (31) over the angles, getting

G frozen(Q ) = 1
4
3πk3

F

π

q

kF∫
0

dhh ln

[
a + 2hq + ib

a − 2hq + ib

]
. (34)

Note the complex logarithm inside the integral, which provides the 
needed kinematical dependence of the averaged propagator, differ-
ing from the bare Lorentzian shape. Finally the integral over the 
momentum h can also be performed, resulting in

G frozen(Q ) = 1
4
3πk3

F

π

q

{
(a + ib)kF

2q
(35)

+ 4q2k2
F − (a + ib)2

8q2
ln

[
a + 2kF q + ib

a − 2kF q + ib

]}
.

By comparing the response functions evaluated in the frozen 
approximation, i.e., substituting the denominator of the � propaga-
tor in Eq. (22) for the frozen expression in Eq. (35), with the exact 
results, we find that the shapes around the � peak are similar, 
but with slightly different width and position of the center of the 
peak. We have checked that the differences can be minimized by 
changing the parameters a, b with respect to the “bare” ones, given 
by Eqs. (32), (33). This is because we have computed the averaged 
denominator without taking into account the current matrix ele-
ments appearing in the exact responses, although the functional 
form and kinematical dependence is the appropriate one.

In practice, we adjust �� and apply a shift in the expression for 
a in Eq. (32) in order to obtain the best approximation to the exact 
results. The effective “frozen” parameters we actually introduce in 
Eq. (35), are given by

afrozen ≡ m2
N + Q 2 + 2mN(ω + �frozen) − M2

� + �2
frozen

4
(36)

bfrozen ≡ M��frozen . (37)

We consider �frozen and the frozen shift, �frozen, to be tunable 
parameters depending on the momentum transfer q. We have 
adjusted these parameters for different q-values and we provide 
them in Table 1.
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Table 1
Values of the free parameters of the Fermi-averaged �-propagator for different 
kinematic situations corresponding to different values of the momentum transfer q.

q (MeV/c) �frozen (MeV) �frozen (MeV)

300 20 130
400 65 147
500 65 145
800 80 125

1000 100 100
1200 115 85
1500 150 40
2000 150 0

Fig. 2. (Color online.) Square of the absolute value of the spin-independent term of 
the �-propagator in frozen approximation compared to the average propagator. In 
this evaluation we have taken q = 1000 MeV/c and �� = 120 MeV.

3. Results

In this section we validate the frozen approximation by com-
puting the approximate 2p–2h response functions and comparing 
with the exact results in the RFG. We consider the case of the 
nucleus 12C with Fermi momentum kF = 225 MeV/c, and show 
the different response functions for low to high values of the mo-
mentum transfer. For other nuclei with different kF the frozen 
parameters of Table 1 should be determined again, and we expect 
their values change slightly.

In Fig. 2 we show the modulus squared of the � propagator, 
given by the G�(H + Q ) function defined in Eq. (28), computed for 
h = 0, as a function of ω for q = 1 GeV/c. It presents the typical 
Lorentzian shape corresponding to width �� = 120 MeV. We ob-
serve a narrow peak around ω 
 650 MeV. This corresponds to the 
�-peak position for q = 1 GeV/c. In the same figure we also show 
the square of the frozen average G frozen (solid line). The resulting 
peak is quenched and broadened as compared to the Lorentzian 
shape, reducing its strength and enlarging its width. This behavior 
of the averaged �-propagator drives the actual shape of the ex-
act 2p–2h nuclear responses, being more realistic than the simple 
Lorentzian shape of the frozen approximation without the average, 
as we will see below.

In Fig. 3 we show the weak transverse 2p–2h response function 
of 12C for four different values of the momentum transfer rang-
ing from 300 to 1500 MeV/c. The curves correspond to different 
calculations or approximations made in the evaluation of the re-
sponses, as labeled in the legend. The solid line corresponds to the 
seven-dimensional calculation with no approximations. The other 
two curves refer to the different frozen nucleon approximations 
developed in this work: the dashed line is obtained with Eq. (12)
but performing the replacement expressed in (30) for the forward 
�-excitation terms in the evaluation of the current matrix ele-
ments; on the contrary, the dotted line corresponds to the same 
Fig. 3. (Color online.) 2p–2h transverse response function RT of 12C for different 
momentum transfers q. The exact results are compared to the frozen approximation 
with and without the averaged � propagator.

frozen nucleon approximation, Eq. (12), but without the Fermi-
average of the �-propagator in the forward terms.

As it can be seen from Fig. 3, for those values of the momen-
tum transfer for which the �-peak is not reached (the panel with 
q = 300 MeV/c), there is really little difference between averag-
ing or not the � propagator. This is certainly not the case when 
the �-peak is fully reached, as shown in the other panels. In this 
situation there is a dramatic difference between performing the 
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Fig. 4. (Color online.) Comparison of 2p–2h electromagnetic transverse response 
functions of 12C within different models for two values of the momentum trans-
fer. The exact RFG results and the frozen approximation are compared with the 
shell model (SM) results of [34]. The total shell model results (1p–1h) + (2p–2h) 
are also shown for comparison.

Fermi-average of the �-propagator or not. This difference is in 
consonance with the results shown in the previous Fig. 2, and it 
shows how crucial is the treatment of the �-propagator to obtain 
accurate results for the 2p–2h responses in the frozen nucleon ap-
proximation, i.e, with only one integration.

The results in Fig. 3 have been obtained after fitting the param-
eters (�frozen, �frozen) for the Fermi-averaged �-propagator at the 
different values of the momentum transfer quoted in Table 1. It is 
also worth noting that there is no way of converting the dotted 
line into the dashed one by only a suitable fitting of these param-
eters, i.e., without averaging the �-propagator.

In Fig. 4 we show results for the transverse electromagnetic 
2p–2h response function. The frozen and exact (7D) T response of 
the RFG are compared with the results obtained in the shell model 
2p–2h calculation of [34]. This was one of the first computations of 
the 2p–2h response within the nuclear shell model. The total nu-
clear response in the shell model, obtained by adding the 1p–1h 
to the 2p–2h channel, is also shown to appreciate the relative size 
of the 2p–2h contribution to the total result.

As shown in Fig. 4, the Fermi gas results (either in frozen ap-
proximation or not) are similar to the shell model ones. The small 
discrepancy for q = 300 MeV/c between them cannot be attributed 
to relativistic effects because of the low momentum transfer value 
considered, but to the different coupling constants and form fac-
tors used in the model of the � meson-exchange current con-
sidered in [34] and the present approach. For q = 400 MeV/c the 
larger discrepancy, starting from ω = 250 MeV, can be attributed 
to the dynamic treatment of the � propagator in the relativis-
tic case, while in the shell model the � propagator is static. We 
can remark the slightly different threshold effects between both 
calculations. These effects are, as expected, very sensitive to the 
Fig. 5. (Color online.) Comparison of the frozen approximation with the exact re-
sults for several 2p–2h CC weak response functions. The target is 12C. Several values 
of the momentum transfer are displayed: q = 300, 400, 500, 1000, 1200, 1500 and 
2000 MeV/c.

treatment of the nuclear ground state. Note also that the frozen 
approximation describes reasonably well this low momentum q =
300 MeV/c, considering the simplifications involved.

Finally in Fig. 5 we show that the frozen approximation works 
notably well in a range of momentum transfer from low to high 
values of q. We compare the T , T ′ , and CC 2p–2h responses in 
frozen approximation with the exact results obtained computing 
numerically the 7D integral of the hadronic tensor. The accord is 
particularly good for the two transverse responses which dominate 
the cross section. A slight disagreement occurs for very low energy 
transfer at threshold where the response functions are anyway 
small. In the case of the CC response function some tiny differences 
are observed. However, note that this response is small because 
the dominant � current is predominantly transverse. Moreover, its 
global contribution to the cross section is not very significant be-
cause it is partially canceled with the contribution of the CL and 
LL responses.

We have checked that the cross section for fixed incident neu-
trino energy agrees well with the exact results, as expected, be-
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cause it is computed as a linear combination of the five response 
functions with a greater contribution from the T and T ′ ones. In 
a real experimental situation an integration over the incident neu-
trino flux is needed. This flux integration has been performed in 
[37] by using a parametrization of the exact results of the present 
model, with a good global agreement with the experimental data. 
We refer to [37] for the numerical results. In this work we have 
shown that this can also be done within the frozen approximation 
as an alternative with similar results.

Physical interpretation of the frozen approximation. The validity of the 
frozen approximation led us to conclude that, in the inclusive re-
sponses for two-particle emission, the detailed information about 
the momenta carried out by the two nucleons is lost. This is be-
cause the energy and momentum transfer ω, q are shared by the 
two nucleons in multiple ways. This is reminiscent from the phase-
space kinematical dependence (which can be obtained setting the 
elementary response rK to unity) already seen in [29]. The soft 
dependence of the elementary response on the initial momenta 
makes the same argument applicable to the full responses with 
the exception of the � forward current that requires one to soften 
and average the rapid variations of the � propagator. Only the low-
energy region where the sharing is highly restricted and the cross 
section is therefore very small, is found to be sensitive to the de-
tails of the initial state. This is also supported by the comparison 
between the shell model and the RFG.

Finally, it is interesting to explicitly quantify the computational 
time gain of the frozen approximation. For a typical numerical in-
tegration with ten points per dimension one roughly expects a 
reduction factor ∼ 106. On an average laptop the CPU time for 
computing the five response functions at a given (q, ω) point is 
about 0.01 s, while the full calculation takes about 3 h.

4. Conclusions

In this work we have introduced and validated the frozen nu-
cleon approximation for a fast and precise calculation of the inclu-
sive 2p–2h response functions in a relativistic Fermi gas model. 
This approximation neglects the momentum dependence of the 
two holes in the ground state and requires the use of an effec-
tive propagator for the � resonance conveniently averaged over 
the Fermi sphere, for which we have provided a simple analytical 
expression. For momentum transfers above the Fermi momentum 
this approximation makes it possible to compute the responses 
with only a one-dimensional integral. Taking into account all the 
uncertainties in modeling the two-nucleon emission reactions, this 
approach can be used instead of the full 7D integral, obtaining 
very satisfactory results. Although we have used a specific model 
of MEC to prove the validity of the approximation, it is reasonable 
to expect that the frozen approach is also valid for other 2p–2h 
models [3,4,6,8,9,35,36]. This can be of great interest when im-
plementing 2p–2h models in Monte Carlo event generators, which 
up to now have relied on parameterizations from external calcula-
tions. In summary, the frozen approximation enables one to make 
2p–2h calculations very efficiently and rapidly, instead of interpo-
lating pre-calculated tables, including allowing the parameters of 
the models to be modified inside the codes, if desired. Finally, in 
the near future this study will be extended to an exploration of 
how the 2p–2h MEC responses depend on nuclear species [38].
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