145 research outputs found

    a comparison of morphological and petrological methods

    Get PDF
    In planetary sciences, the emplacement of lava flows is commonly modelled using a single rheological parameter (apparent viscosity or apparent yield strength) calculated from morphological dimensions using JeffreysĘĽ and HulmeĘĽs equations. The rheological parameter is then typically further interpreted in terms of the nature and chemical composition of the lava (e.g., mafic or felsic). Without the possibility of direct sampling of the erupted material, the validity of this approach has remained largely untested. In modern volcanology, the complex rheological behaviour of lavas is measured and modelled as a function of chemical composition of the liquid phase, fractions of crystals and bubbles, temperature and strain rate. Here, we test the planetary approach using a terrestrial basaltic lava flow from the Western Volcanic Zone in Iceland. The geometric parameters required to employ JeffreysĘĽ and HulmeĘĽs equations are accurately estimated from high-resolution HRSC-AX Digital Elevation Models. Samples collected along the lava flow are used to constrain a detailed model of the transient rheology as a function of cooling, crystallisation, and compositional evolution of the residual melt during emplacement. We observe that the viscosity derived from the morphology corresponds to the value estimated when significant crystallisation inhibits viscous deformation, causing the flow to halt. As a consequence, the inferred viscosity is highly dependent on the details of the crystallisation sequence and crystal shapes, and as such, is neither uniquely nor simply related to the bulk chemical composition of the erupted material. This conclusion, drawn for a mafic lava flow where crystallisation is the primary process responsible for the increase of the viscosity during emplacement, should apply to most of martian, lunar, or mercurian volcanic landforms, which are dominated by basaltic compositions. However, it may not apply to felsic lavas where vitrification resulting from degassing and cooling may ultimately cause lava flows to halt

    Early crustal processes revealed by the ejection site of the oldest martian meteorite

    Get PDF
    The formation and differentiation of the crust of Mars in the first tens of millions of years after its accretion can only be deciphered from incredibly limited records. The martian breccia NWA 7034 and its paired stones is one of them. This meteorite contains the oldest martian igneous material ever dated: ~4.5 Ga old. However, its source and geological context have so far remained unknown. Here, we show that the meteorite was ejected 5–10 Ma ago from the north-east of the Terra Cimmeria—Sirenum province, in the southern hemisphere of Mars. More specifically, the breccia belongs to the ejecta deposits of the Khujirt crater formed 1.5 Ga ago, and it was ejected as a result of the formation of the Karratha crater 5–10 Ma ago. Our findings demonstrate that the Terra Cimmeria—Sirenum province is a relic of the differentiated primordial martian crust, formed shortly after the accretion of the planet, and that it constitutes a unique record of early crustal processes. This province is an ideal landing site for future missions aiming to unravel the first tens of millions of years of the history of Mars and, by extension, of all terrestrial planets, including the Earth

    Igneous mineralogy at Bradbury Rise: The first ChemCam campaign at Gale crater

    Get PDF
    Textural and compositional analyses using Chemistry Camera (ChemCam) remote microimager and laser-induced breakdown spectroscopy (LIBS) have been performed on five float rocks and coarse gravels along the first 100 m of the Curiosity traverse at Bradbury Rise. ChemCam, the first LIBS instrument sent to another planet, offers the opportunity to assess mineralogic diversity at grain-size scales (~ 100 µm) and, from this, lithologic diversity. Depth profiling indicates that targets are relatively free of surface coatings. One type of igneous rock is volcanic and includes both aphanitic (Coronation) and porphyritic (Mara) samples. The porphyritic sample shows dark grains that are likely pyroxene megacrysts in a fine-grained mesostasis containing andesine needles. Both types have magnesium-poor basaltic compositions and in this respect are similar to the evolved Jake Matijevic rock analyzed further along the Curiosity traverse both with Alpha-Particle X-ray Spectrometer and ChemCam instruments. The second rock type encountered is a coarse-grained intrusive rock (Thor Lake) showing equigranular texture with millimeter size crystals of feldspars and Fe-Ti oxides. Such a rock is not unique at Gale as the surrounding coarse gravels (such as Beaulieu) and the conglomerate Link are dominated by feldspathic (andesine-bytownite) clasts. Finally, alkali feldspar compositions associated with a silica polymorph have been analyzed in fractured filling material of Preble rock and in Stark, a putative pumice or an impact melt. These observations document magmatic diversity at Gale and describe the first fragments of feldspar-rich lithologies (possibly an anorthosite) that may be ancient crust transported from the crater rim and now forming float rocks, coarse gravel, or conglomerate clasts

    Size and Shape Constraints of (486958) Arrokoth from Stellar Occultations

    Get PDF
    We present the results from four stellar occultations by (486958) Arrokoth, the flyby target of the New Horizons extended mission. Three of the four efforts led to positive detections of the body, and all constrained the presence of rings and other debris, finding none. Twenty-five mobile stations were deployed for 2017 June 3 and augmented by fixed telescopes. There were no positive detections from this effort. The event on 2017 July 10 was observed by the Stratospheric Observatory for Infrared Astronomy with one very short chord. Twenty-four deployed stations on 2017 July 17 resulted in five chords that clearly showed a complicated shape consistent with a contact binary with rough dimensions of 20 by 30 km for the overall outline. A visible albedo of 10% was derived from these data. Twenty-two systems were deployed for the fourth event on 2018 August 4 and resulted in two chords. The combination of the occultation data and the flyby results provides a significant refinement of the rotation period, now estimated to be 15.9380 ± 0.0005 hr. The occultation data also provided high-precision astrometric constraints on the position of the object that were crucial for supporting the navigation for the New Horizons flyby. This work demonstrates an effective method for obtaining detailed size and shape information and probing for rings and dust on distant Kuiper Belt objects as well as being an important source of positional data that can aid in spacecraft navigation that is particularly useful for small and distant bodies.Fil: Buie, Marc W.. Southwest Research Institute.; Estados UnidosFil: Porter, Simon B.. Southwest Research Institute.; Estados UnidosFil: Tamblyn, Peter. Southwest Research Institute.; Estados UnidosFil: Terrell, Dirk. Southwest Research Institute.; Estados UnidosFil: Parker, Alex Harrison. Southwest Research Institute.; Estados UnidosFil: Baratoux, David. Géosciences Environnement Toulouse; Francia. Centre National de la Recherche Scientifique; FranciaFil: Kaire, Maram. Ministry of Higher Education Research and Innovation; Senegal. Asociación Senegalesa para la Promoción de la Astronomía; SenegalFil: Leiva, Rodrigo. Southwest Research Institute.; Estados UnidosFil: Verbiscer, Anne J.. University of Virginia; Estados UnidosFil: Zangari, Amanda M.. Southwest Research Institute.; Estados UnidosFil: Colas, François. Centre National de la Recherche Scientifique. Observatoire de Paris; Francia. Sorbonne University; Francia. Centre National de la Recherche Scientifique; FranciaFil: Diop, Baidy Demba. Direction de la Formation et de la Communication; SenegalFil: Samaniego, Joseph I.. University of Colorado; Estados UnidosFil: Wasserman, Lawrence H.. Lowell Observatory; Estados UnidosFil: Benecchi, Susan D.. Planetary Science Institute; Estados UnidosFil: Caspi, Amir. Southwest Research Institute.; Estados UnidosFil: Gwyn, Stephen. Herzberg Astronomy and Astrophysics Research Centre; CanadáFil: Kavelaars, J. J.. Herzberg Astronomy and Astrophysics Research Centre; CanadáFil: Ocampo Uría, Adriana C.. National Aeronautics and Space Administration; Estados UnidosFil: Rabassa, Jorge Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; ArgentinaFil: Skrutskie, M. F.. University of Virginia; Estados UnidosFil: Soto, Alejandro. Southwest Research Institute.; Estados UnidosFil: Tanga, Paolo. Université Côte d’Azur; Francia. Centre National de la Recherche Scientifique; FranciaFil: Young, Eliot F.. Southwest Research Institute.; Estados UnidosFil: Stern, S. Alan. Southwest Research Institute.; Estados UnidosFil: Andersen, Bridget C.. University of Virginia; Estados UnidosFil: Arango Pérez, Mauricio E.. Universidad de Antioquia; ColombiaFil: Arredondo, Anicia. Massachusetts Institute of Technology; Estados UnidosFil: Artola, Rodolfo Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: García Migani, Esteban Andrés. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Geofísica y Astronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentin
    • …
    corecore