27 research outputs found

    Oceans and Coastal Ecosystems and Their Services

    Get PDF
    Ocean and coastal ecosystems support life on Earth and many aspects of human well-being. Covering two-thirds of the planet, the ocean hosts vast biodiversity and modulates the global climate system by regulating cycles of heat, water and elements, including carbon. Marine systems are central to many cultures, and they also provide food, minerals, energy and employment to people. Since previous assessments1 , new laboratory studies, field observations and process studies, a wider range of model simulations, Indigenous knowledge, and local knowledge have provided increasing evidence on the impacts of climate change on ocean and coastal systems, how human communities are experiencing these impacts, and the potential solutions for ecological and human adaptation.Peer reviewe

    Sea surface temperature anomalies, seasonal cycle and trend regimes in the Eastern Pacific coast

    No full text
    We used the extended reconstruction of sea surface temperature (ERSST) to analyze the variation of surface temperature and the seasonal cycle along the coast of the eastern Pacific (60° N–60° S, 61 pixels alongshore) from 1950 to 2010 (732 months). First, we analyzed the monthly anomalies and looked for a relationship of such anomalies with total solar irradiance (TSI) and then the Regime Shift Detector (RSD) was applied to detect possible temperature regimes in the series. Afterwards, we calculated a yearly temperature range per pixel (amplitude of seasonal cycle) and through the subtraction of a latitudinal theoretical curve of temperature based on solar irradiance, the residuals of the seasonal cycle were obtained. The results showed an almost complete spatial synchrony and dominance of negative anomalies from 1950 to mid-late 1970's, with a switch to near-zero and positive anomalies that lasted up to late 1990's when a new shift to negative values was detected. Such a shift lasted until the early 2000's when positive anomalies appeared again but there was a change to negative anomalies in the late 2000's. These results were supported by the RSD. The TSI variability shows a clear relationship with that of sea surface temperature anomalies and with the regime changes. This is probably due to a difference in the amount of energy received from the sun. Comparing the "cool regime" versus the "warm regime", the second one received 0.39% more energy (approximately 3 × 10<sup>8</sup> J m<sup>−2</sup>) from the sun. Seasonal cycles show larger ranges at northern latitudes (>40° N), northern tropical-temperate transition zone (20°–26° N) and in the tropical-equatorial band (0°–30° S). The smallest ranges occur at 0°–16° N and 50°–60° S. The residuals (seasonal minus the theoretical curve) indicated a clear modulation due to advection by ocean currents

    Changes in the Dust‐Influenced Biological Carbon Pump in the Canary Current System: Implications From a Coastal and an Offshore Sediment Trap Record Off Cape Blanc, Mauritania

    Get PDF
    Long‐term data characterizing the oceans' biological carbon pump are essential for understanding impacts of climate variability on marine ecosystems. The “Bakun upwelling intensification hypothesis” suggests intensified coastal upwelling due to a greater land‐sea temperature gradient influenced by global warming. We present long time series of bathypelagic (approximately 1,200–3,600 m) particle fluxes from a coastal (CBeu: 2003–2016) and an offshore (CBmeso: 1988–2016) sediment trap setting located in the Canary Current upwelling. Organic carbon (Corg) and biogenic opal (BSi, diatoms) fluxes were twofold to threefold higher at the coastal upwelling site compared to the offshore site, respectively, and showed higher seasonality with flux maxima in spring. A relationship between winter and spring BSi fluxes to the North Atlantic Oscillation index was best expressed at the offshore site CBmeso. Lithogenic (dust) fluxes regularly peaked in winter when frequent low‐altitude dust storms and deposition occurred, decreasing offshore by about threefold. We obtained a high temporal match of short‐term peaks of BSi and dust fluxes in winter to spring at the inner site CBeu. We found synchronous flux variations at both sites and an anomalous year 2005, characterized by high BSi and Corg fluxes under a low North Atlantic Oscillation. Corg and BSi fluxes revealed a decreasing trend from 2006 to 2016 at the coastal site CBeu, pointing to coastal upwelling relaxation during the last two decades. The permanent offshore upwelling zone of the deflected Canary Current represented by the flux record of CBmeso showed no signs of increasing upwelling as well which contradicts the Bakun hypothesis

    Increasing frequencies of warm and humid air masses over the conterminous United States from 1948 to 2005

    No full text
    Time series of individual climate variables, such as air temperature and precipitation, have been thoroughly examined to evaluate climate change, but few studies have evaluated how air masses have varied over time. We use the Spatial Synoptic Classification air mass approach to classify multivariate meteorological surface variables into discrete groups and examine trends in air mass frequencies over the period 1948-2005 for the continental United States. We observe increases in warm, moist air masses at the expense of cold, dry air masses, consistent with expectations in an atmosphere with increasing greenhouse gas concentrations. Temporal variations in the North Atlantic Oscillation, Pacific/North American teleconnection pattern, Arctic Oscillation, and El Niño-Southern Oscillation partially explain some of these observed trends in winter
    corecore