193 research outputs found

    Tuning the assembling process of modules by the use of proper equipment

    Full text link
    The tuning of the assembly line of concentrated photovoltaic (CPV) modules is an important task to ensure that the efficiency of modules made at the production line is as high as those fabricated in the development phase. A solar simulator for CPV and a module optical analyzer (MOA) are proposed to be used in production to improve the quality of the assembling process (both during the tuning of the production line and once it is completed). Moreover, the usefulness of performing a quality control based on maximum power and optical pointing of modules is discussed by performing a deep analysis of some modules manufactured in the production line and characterized both indoors and outdoors

    Coherence properties of exciton-polariton OPO condensates in one and two dimensions

    Get PDF
    We give an overview of the coherence properties of exciton-polariton condensates generated by optical parametric scattering. Different aspects of the first-order coherence (g (1)) have been investigated. The spatial coherence extension of a two-dimensional (2D) polariton system, below and at the parametric threshold, demonstrates the development of a constant phase coherence over the entire condensate, once the condensate phase transition takes place. The effect on coherence of the photonic versus excitonic nature of the condensates is also examined. The coherence of a quasi-1D trap, composed of a line defect, is studied, showing the detrimental effect of reduced dimensionality on the establishment of the long range order. In addition, the temporal coherence decay, g (1)(Ï„), reveals a fast decay in contrast with the 2D case. The situation of a quasi-1D condensate coexisting with a 2D one is also presentedThe work was supported by the FP7 ITNs Clermont4 (235114) and Spin-optronics (237252), the Spanish MEC (MAT2011-22997), CAM (S-2009/ESP-1503) and Science Foundation Ireland SIRG/I1592 (PRE

    Obscured Activity: AGN, Quasars, Starbursts and ULIGs observed by the Infrared Space Observatory

    Full text link
    Some of the most active galaxies in the Universe are obscured by large quantities of dust and emit a substantial fraction of their bolometric luminosity in the infrared. Observations of these infrared luminous galaxies with the Infrared Space Observatory (ISO) have provided a relatively unabsorbed view to the sources fuelling this active emission. The improved sensitivity, spatial resolution and spectroscopic capability of ISO over its predecessor Infrared Astronomical Satellite (IRAS), has enabled significant advances in the understanding of the infrared properties of active galaxies. ISO surveyed a wide range of active galaxies which, in the context of this review, includes those powered by intense bursts of star-formation as well as those containing a dominant active galactic nucleus (AGN). Mid infrared imaging resolved for the first time the dust enshrouded nuclei in many nearby galaxies, while a new era in infrared spectroscopy was opened by probing a wealth of atomic, ionic and molecular lines as well as broad band features in the mid and far infrared. This was particularly useful since it resulted in the understanding of the power production, excitation and fuelling mechanisms in the nuclei of active galaxies including the intriguing but so far elusive ultraluminous infrared galaxies. Detailed studies of various classes of AGN and quasars greatly improved our understanding of the unification scenario. Far-infrared imaging and photometry also revealed the presence of a new very cold dust component in galaxies and furthered our knowledge of the far-infrared properties of faint starbursts, ULIGs and quasars. We summarise almost nine years of key results based upon ISO data spanning the full range of luminosity and type of active galaxies.Comment: Accepted for publication in 'ISO science legacy - a compact review of ISO major achievements', Space Science Reviews - dedicated ISO issue. To be published by Springer in 2005. 62 pages (low resolution figures version). Higher resolution PDFs available from http://users.physics.uoc.gr/~vassilis/papers/VermaA.pdf or http://www.iso.vilspa.esa.es/science/SSR/Verma.pd

    The triggerless data acquisition system of the XENONnT experiment

    Get PDF
    The XENONnT detector uses the latest and largest liquid xenon-based time projection chamber (TPC) operated by the XENON Collaboration, aimed at detecting Weakly Interacting Massive Particles and conducting other rare event searches. The XENONnT data acquisition (DAQ) system constitutes an upgraded and expanded version of the XENON1T DAQ system. For its operation, it relies predominantly on commercially available hardware accompanied by open-source and custom-developed software. The three constituent subsystems of the XENONnT detector, the TPC (main detector), muon veto, and the newly introduced neutron veto, are integrated into a single DAQ, and can be operated both independently and as a unified system. In total, the DAQ digitizes the signals of 698 photomultiplier tubes (PMTs), of which 253 from the top PMT array of the TPC are digitized twice, at ×10 and ×0.5 gain. The DAQ for the most part is a triggerless system, reading out and storing every signal that exceeds the digitization thresholds. Custom-developed software is used to process the acquired data, making it available within ∼30 s for live data quality monitoring and online analyses. The entire system with all the three subsystems was successfully commissioned and has been operating continuously, comfortably withstanding readout rates that exceed ∼500 MB/s during calibration. Livetime during normal operation exceeds 99% and is ∼90% during most high-rate calibrations. The combined DAQ system has collected more than 2 PB of both calibration and science data during the commissioning of XENONnT and the first science run

    Double-weak decays of 124Xe and 136Xe in the XENON1T and XENONnT experiments

    Full text link
    We present results on the search for two-neutrino double-electron capture (2νECEC) of 124Xe and neutrinoless double-β decay (0νββ) of 136Xe in XENON1T. We consider captures from the K shell up to the N shell in the 2νECEC signal model and measure a total half-life of T2νECEC1/2=(1.1±0.2stat±0.1sys)×1022yr with a 0.87kgyr isotope exposure. The statistical significance of the signal is 7.0σ. We use XENON1T data with 36.16kgyr of 136Xe exposure to search for 0νββ. We find no evidence of a signal and set a lower limit on the half-life of T0νββ1/2>1.2×1024yrat90%CL. This is the best result from a dark matter detector without an enriched target to date. We also report projections on the sensitivity of XENONnT to 0νββ. Assuming a 275kgyr 136Xe exposure, the expected sensitivity is T0νββ1/2>2.1×1025yrat90%CL, corresponding to an effective Majorana mass range of ⟨mββ⟩<(0.19–0.59)eV/c2

    Search for New Physics in Electronic Recoil Data from XENONnT

    Full text link
    We report on a blinded analysis of low-energy electronic-recoil data from the first science run of the XENONnT dark matter experiment. Novel subsystems and the increased 5.9 tonne liquid xenon target reduced the background in the (1, 30) keV search region to (15.8±1.3) events/(tonne×year×keV), the lowest ever achieved in a dark matter detector and ∼5 times lower than in XENON1T. With an exposure of 1.16 tonne-years, we observe no excess above background and set stringent new limits on solar axions, an enhanced neutrino magnetic moment, and bosonic dark matter

    First Dark Matter Search with Nuclear Recoils from the XENONnT Experiment

    Get PDF
    We report on the first search for nuclear recoils from dark matter in the form of weakly interacting massive particles (WIMPs) with the XENONnT experiment, which is based on a two-phase time projection chamber with a sensitive liquid xenon mass of 5.9 ton. During the (1.09±0.03)  ton yr exposure used for this search, the intrinsic 85Kr and 222Rn concentrations in the liquid target are reduced to unprecedentedly low levels, giving an electronic recoil background rate of (15.8±1.3)  events/ton yr keV in the region of interest. A blind analysis of nuclear recoil events with energies between 3.3 and 60.5 keV finds no significant excess. This leads to a minimum upper limit on the spin-independent WIMP-nucleon cross section of 2.58×10−47^{−47}  cm2^2 for a WIMP mass of 28  GeV/c2^2 at 90% confidence level. Limits for spin-dependent interactions are also provided. Both the limit and the sensitivity for the full range of WIMP masses analyzed here improve on previous results obtained with the XENON1T experiment for the same exposure

    Emission of single and few electrons in XENON1T and limits on light dark matter

    Full text link
    Delayed single- and few-electron emissions plague dual-phase time projection chambers, limiting their potential to search for light-mass dark matter. This paper examines the origins of these events in the XENON1T experiment. Characterization of the intensity of delayed electron backgrounds shows that the resulting emissions are correlated, in time and position, with high-energy events and can effectively be vetoed. In this work we extend previous S2-only analyses down to a single electron. From this analysis, after removing the correlated backgrounds, we observe rates <30 events/(electron×kg×day) in the region of interest spanning 1 to 5 electrons. We derive 90% confidence upper limits for dark matter-electron scattering, first direct limits on the electric dipole, magnetic dipole, and anapole interactions, and bosonic dark matter models, where we exclude new parameter space for dark photons and solar dark photons

    Application and modeling of an online distillation method to reduce krypton and argon in XENON1T

    Full text link
    A novel online distillation technique was developed for the XENON1T dark matter experiment to reduce intrinsic background components more volatile than xenon, such as krypton or argon, while the detector was operating. The method is based on a continuous purification of the gaseous volume of the detector system using the XENON1T cryogenic distillation column. A krypton-in-xenon concentration of (360±60)ppq was achieved. It is the lowest concentration measured in the fiducial volume of an operating dark matter detector to date. A model was developed and fit to the data to describe the krypton evolution in the liquid and gas volumes of the detector system for several operation modes over the time span of 550 days, including the commissioning and science runs of XENON1T. The online distillation was also successfully applied to remove 37Ar after its injection for a low energy calibration in XENON1T. This makes the usage of 37Ar as a regular calibration source possible in the future. The online distillation can be applied to next-generation LXe TPC experiments to remove krypton prior to, or during, any science run. The model developed here allows further optimization of the distillation strategy for future large scale detectors
    • …
    corecore