481 research outputs found

    A cathode ray tube suitable for viewing under high ambient

    Get PDF
    Cathode ray tube with nonreciprocal optical filtering techniques for viewing under high ambien

    Influence of microstructure on creep strength of MRI 230D Mg alloy

    Get PDF
    The low density of magnesium alloys makes them attractive for lightweight constructions. However, creep remains an important limitation of Mg alloys. To gain a more detailed understanding of the correlation between microstructure and creep properties in Mg alloys, creep tests have been performed on MRI 230D samples featuring various microstructures. For this purpose, the MRI 230D Mg alloy has been thixomolded into a plate with four steps of different height, which gives different microstructures in each step due to different cooling rates. With an increase in cooling rate (e.g., a decrease in step height) the interconnectivity of the eutectic phase increases at virtually constant volume fraction. The creep strength is found to decrease with decreasing interconnectivity of the eutectic phase. This implies that a eutectic phase morphology, which is highly interconnected, benefits the creep properties and should therefore be one goal in further developments for creep resistant Mg alloys

    The high-pressure phase of boron, {\gamma}-B28: disputes and conclusions of 5 years after discovery

    Full text link
    {\gamma}-B28 is a recently established high-pressure phase of boron. Its structure consists of icosahedral B12 clusters and B2 dumbbells in a NaCl-type arrangement (B2){\delta}+(B12){\delta}- and displays a significant charge transfer {\delta}~0.5- 0.6. The discovery of this phase proved essential for the understanding and construction of the phase diagram of boron. {\gamma}-B28 was first experimentally obtained as a pure boron allotrope in early 2004 and its structure was discovered in 2006. This paper reviews recent results and in particular deals with the contentious issues related to the equation of state, hardness, putative isostructural phase transformation at ~40 GPa, and debates on the nature of chemical bonding in this phase. Our analysis confirms that (a) calculations based on density functional theory give an accurate description of its equation of state, (b) the reported isostructural phase transformation in {\gamma}-B28 is an artifact rather than a fact, (c) the best estimate of hardness of this phase is 50 GPa, (d) chemical bonding in this phase has a significant degree of ionicity. Apart from presenting an overview of previous results within a consistent view grounded in experiment, thermodynamics and quantum mechanics, we present new results on Bader charges in {\gamma}-B28 using different levels of quantum-mechanical theory (GGA, exact exchange, and HSE06 hybrid functional), and show that the earlier conclusion about significant degree of partial ionicity in this phase is very robust

    ost in promiscuity? An evolutionary and biochemical evaluation of HSD10 function in cardiolipin metabolism

    Get PDF
    Multifunctional proteins are challenging as it can be difficult to confirm pathomechanisms associated with disease-causing genetic variants. The human 17β-hydroxysteroid dehydrogenase 10 (HSD10) is a moonlighting enzyme with at least two structurally and catalytically unrelated functions. HSD10 disease was originally described as a disorder of isoleucine metabolism, but the clinical manifestations were subsequently shown to be linked to impaired mtDNA transcript processing due to deficient function of HSD10 in the mtRNase P complex. A surprisingly large number of other, mostly enzymatic and potentially clinically relevant functions have been attributed to HSD10. Recently, HSD10 was reported to exhibit phospholipase C-like activity towards cardiolipins (CL), important mitochondrial phospholipids. To assess the physiological role of the proposed CL-cleaving function, we studied CL architectures in living cells and patient fibroblasts in different genetic backgrounds and lipid environments using our well-established LC–MS/MS cardiolipidomic pipeline. These experiments revealed no measurable effect on CLs, indicating that HSD10 does not have a physiologically relevant function towards CL metabolism. Evolutionary constraints could explain the broad range of reported substrates for HSD10 in vitro. The combination of an essential structural with a non-essential enzymatic function in the same protein could direct the evolutionary trajectory towards improvement of the former, thereby increasing the flexibility of the binding pocket, which is consistent with the results presented here

    Do-it-yourself genetic testing

    Get PDF
    We developed a computational screen that tests an individual's genome for mutations in the BRCA genes, despite the fact that both are currently protected by patents
    corecore