309 research outputs found

    Renormalization Group Analysis of a Gursey Model Inspired Field Theory II

    Full text link
    Recently a model, which is equivalent to the scalar form of Gursey model, is shown to be a nontrivial field theoretical model when it is gauged with a SU(N) field. In this paper we study another model that is equivalent to the vector form of the Gursey model. We get a trivial theory when it is coupled with a scalar field. This result changes drastically when it is coupled with an additional SU(N) field. We find a nontrivial field theoretical model under certain conditions.Comment: 10 pages, 10 figures, revtex4, typos corrected, published versio

    Do CAPM results hold in a dynamic economy. A Numerical analysis

    Get PDF
    Cataloged from PDF version of article.In this research we use the projection method (reported by Judd) to find numerical solutions to the Euler equations of a stochastic dynamic growth model. The mode1 that we solve is Brock’s asset pricing model for a variety of parameterizations of the production functions. Using simulated data from the model, conjectures (which are not analytically tractable) can be verified. We show that the market portfolio is mean-variance efficient in this dynamic context. We also show a result that is not available from the static CAPM theory: the efficient frontier shifts up and down over the business cycle

    The Equity Premium in Brock's Asset Pricing Model

    Get PDF
    Cataloged from PDF version of article.In this paper we combine dynamic programming methods with projection methods for solving stochastic growth models. As an application of these methods, we solve Brock’s asset pricing model with a variety of parameterizations. We focused on finding parameterizations that result in an equity premium that is high relative to the variation in consumption. We show (both analytically and numerically) that the equity premium can be higher in a production based asset pricing model than it is in the consumption based asset pricing model, even when the real output level is the same in both models. r 2006 Elsevier B.V. All rights reserved

    Transmittivity of a Bose-Einstein condensate on a lattice: interference from period doubling and the effect of disorder

    Full text link
    We evaluate the particle current flowing in steady state through a Bose-Einstein condensate subject to a constant force in a quasi-onedimensional lattice and to attractive interactions from fermionic atoms that are localized in various configurations inside the lattice wells. The system is treated within a Bose-Hubbard tight binding model by an out-of-equilibrium Green's function approach. A new band gap opens up when the lattice period is doubled by locating the fermions in alternate wells and yields an interference pattern in the transmittivity on varying the intensity of the driving force. The positions of the transmittivity minima are determined by matching the period of Bloch oscillations and the time for tunnelling across the band gap. Massive disorder in the distribution of the fermions will wash out the interference pattern, but the same period doubling of the lattice can be experimentally realized in a four-beam set-up. We report illustrative numerical results for a mixture of 87Rb and 40K atoms in an optical lattice created by laser beams with a wavelength of 763 nm.Comment: 13 pages, 5 figure

    Air Sampling and Analysis Method for Volatile Organic Compounds (VOCs) Related to Field-Scale Mortality Composting Operations

    Get PDF
    In biosecure composting, animal mortalities are so completely isolated during the degradation process that visual inspection cannot be used to monitor progress or the process status. One novel approach is to monitor the volatile organic compounds (VOCs) released by decaying mortalities and to use them as biomarkers of the process status. A new method was developed to quantitatively analyze potential biomarkers—dimethyl disulfide, dimethyl trisulfide, pyrimidine, acetic acid, propanoic acid, 3-methylbutanoic acid, pentanoic acid, and hexanoic acid—from field-scale biosecure mortality composting units. This method was based on collection of air samples from the inside of biosecure composting units using portable pumps and solid phase microextraction (SPME). Among four SPME fiber coatings, 85 μm CAR/PDMS was shown to extract the greatest amount of target analytes during a 1 h sampling time. The calibration curves had high correlation coefficients, ranging from 96 to 99%. Differences between the theoretical concentrations and those estimated from the calibration curves ranged from 1.47 to 20.96%. Method detection limits of the biomarkers were between 11 pptv and 572 ppbv. The applicability of the prepared calibration curves was tested for air samples drawn from field-scale swine mortality composting test units. Results show that the prepared calibration curves were applicable to the concentration ranges of potential biomaker compounds in a biosecure animal mortality composting unit

    Laboratory scale evaluation of volatile organic compound emissions as indication of swine carcass degradation inside biosecure composting units

    Get PDF
    Biosecure livestock mortality composting systems have been used to dispose of diseased livestock mortalities. In those types of system, visual inspection of carcass degradation is not possible and monitoring VOCs (volatile organic compounds) released by carcasses is a new approach to assess progress of the composting process. In this study, field-scale livestock mortality composting systems were simulated and a laboratory scale composting system with aerobic and anaerobic test units was designed to collect VOC samples from the headspace of decaying plant materials (70 g dry weight) and swine tissues (70 g dry weight) at controlled operating temperatures. Headspace samples were collected with SPME (solid phase microextraction) and analyzed by a GC–MS (gas chromatography–mass spectrometry) system. Among the 43 VOCs identified, dimethyl disulfide, dimethyl trisulfide, and pyrimidine were found to be marker compounds of the mortality composting process. These compounds were only found to be produced by decaying swine tissues but not produced by decaying plant materials. The highest marker VOC emissions were measured during the first three weeks, and VOCs were not detected after the 6th week of the process, which indicates degradation processes were completed and compost materials microbially stabilized (no additional VOC production). Results of respiration tests also showed that compost materials were stabilized. Results of this study can be useful for field-scale composting operations but more studies are needed to show the effects of size and aeration rate of the composting units

    Back Reaction of Strings in Self-Consistent String Cosmology

    Full text link
    We compute the string energy-momentum tensor and {\bf derive} the string equation of state from exact string dynamics in cosmological spacetimes. 1+1, 2+11+1,~2+1 and DD-dimensional universes are treated for any expansion factor RR. Strings obey the perfect fluid relation p=(γ1)ρ p = (\gamma -1) \rho with three different behaviours: (i) {\it Unstable} for R R \to \infty with growing energy density ρR2D \rho \sim R^{2-D} , {\bf negative} pressure, and γ=(D2)/(D1) \gamma =(D-2)/(D-1) ; (ii){\it Dual} for R0 R \to 0 , with ρRD \rho \sim R^{-D} , {\bf positive} pressure and γ=D/(D1)\gamma = D/(D-1) (as radiation); (iii) {\it Stable} for R R \to \infty with ρR1D \rho \sim R^{1-D} , {\bf vanishing} pressure and γ=1\gamma = 1 (as cold matter). We find the back reaction effect of these strings on the spacetime and we take into account the quantum string decay through string splitting. This is achieved by considering {\bf self-consistently} the strings as matter sources for the Einstein equations, as well as for the complete effective string equations. String splitting exponentially suppress the density of unstable strings for large RR. The self-consistent solution to the Einstein equations for string dominated universes exhibits the realistic matter dominated behaviour R(X0)2/(D1)   R \sim (X^0)^{2/(D-1)}\; for large times and the radiation dominated behaviour R(X0)2/D   R \sim (X^0)^{2/D}\; for early times. De Sitter universe does not emerge as solution of the effective string equations. The effective string action (whatever be the dilaton, its potential and the central charge term) is not the appropriate framework in which to address the question of string driven inflation.Comment: 29 pages, revtex, LPTHE-94-2

    Identification and evaluation of VOCs evolved from warm season swine mortality composts

    Get PDF
    The intensive production of swine in Iowa (28.4 % of the U.S.A production) inevitably results in high amounts of piggery waste including animal carcasses. Composting is an environmentally sound and relatively inexpensive method to dispose swine mortalities especially when the carcasses are diseased. Measurement of VOC emissions is an alternative to test progress and completion of the process. In this study, diseased swine mortalities are composted in summer conditions of Central Iowa. Corn silage, oat straw and corn stalks are used as envelope materials. Once a week, air samples are collected from the center of test units and sampled with 85 µm Carboxen/ polydimethylsiloxane (CAR/PDMS) solid phase microextraction (SPME) fiber. Samples were analyzed using gas chromatography (GC) - mass spectrometry (MS). The objective of the study is to investigate the potential usage of VOCs as indicators of swine mortality degradation. It is found that nitrogen and sulfur containing compounds can be used as indicators of the composting process. Sulfur-containing compounds are detected from all test units. Nitrogen-containing compounds are detected from only corn silage test units. It is concluded that carcass degradation is incomplete in all of the test units. Carcass degradation in corn stalks and oat straw test units is better than corn silage test units. These results are supported with respiration rate results. Respiration rates of the remaining swine carcasses are found to be between 5-7 mg CO2-C g VS-1d-1 and swine carcasses are categorized as moderately unstable composts

    Friedel oscillations in a gas of interacting one-dimensional fermionic atoms confined in a harmonic trap

    Full text link
    Using an asymptotic phase representation of the particle density operator ρ^(z)\hat{\rho}(z) in the one-dimensional harmonic trap, the part δρ^F(z)\delta \hat{\rho}_F(z) which describes the Friedel oscillations is extracted. The expectation value with respect to the interacting ground state requires the calculation of the mean square average of a properly defined phase operator. This calculation is performed analytically for the Tomonaga-Luttinger model with harmonic confinement. It is found that the envelope of the Friedel oscillations at zero temperature decays with the boundary exponent ν=(K+1)/2\nu = (K+1)/2 away from the classical boundaries. This value differs from that known for open boundary conditions or strong pinning impurities. The soft boundary in the present case thus modifies the decay of Friedel oscillations. The case of two components is also discussed.Comment: Revised version to appear in Journal of Physics B: Atomic, Molecular and Optical Physic

    Collective ferromagnetism in two-component Fermi-degenerate gas trapped in finite potential

    Full text link
    Spin asymmetry of the ground states is studied for the trapped spin-degenerate (two-component) gases of the fermionic atoms with the repulsive interaction between different components, and, for large particle number, the asymmetric (collective ferromagnetic) states are shown to be stable because it can be energetically favorable to increase the fermi energy of one component rather than the increase of the interaction energy between up-down components. We formulate the Thomas-Fermi equations and show the algebraic methods to solve them. From the Thomas-Fermi solutions, we find three kinds of ground states in finite system: 1) paramagnetic (spin-symmetric), 2) ferromagnetic (equilibrium) and 3) ferromagnetic (nonequilibrium) states. We show the density profiles and the critical atom numbers for these states obtained analytically, and, in ferromagnetic states, the spin-asymmetries are shown to occur in the central regions of the trapped gas, and grows up with increasing particle number. Based on the obtained results, we discuss the experimental conditions and current difficulties to realize the ferromagnetic states of the trapped atom gas, which should be overcome.Comment: submit to PR
    corecore