106 research outputs found

    Transverse NMR relaxation as a probe of mesoscopic structure

    Full text link
    Transverse NMR relaxation in a macroscopic sample is shown to be extremely sensitive to the structure of mesoscopic magnetic susceptibility variations. Such a sensitivity is proposed as a novel kind of contrast in the NMR measurements. For suspensions of arbitrary shaped paramagnetic objects, the transverse relaxation is found in the case of a small dephasing effect of an individual object. Strong relaxation rate dependence on the objects' shape agrees with experiments on whole blood. Demonstrated structure sensitivity is a generic effect that arises in NMR relaxation in porous media, biological systems, as well as in kinetics of diffusion limited reactions.Comment: 4 pages, 3 figure

    Modeling the R2* relaxivity of blood at 1.5 Tesla

    Get PDF
    BOLD (Blood Oxygenation Level Dependent) imaging is used in fMRI to show differences in activation of the brain based on the relative changes of the T2* (= 1/R2*) signal of the blood. However, quantification of blood oxygenation level based on the T2* signal has been hindered by the lack of a predictive model which accurately correlates the T2* signal to the oxygenation level of blood. The T2* signal decay in BOLD imaging is generated due to blood containing paramagnetic deoxyhemoglobin (in comparison to diamagnetic oxyhemoglobin). This generates local field inhomogeneities, which cause protons to experience different phase shifts, leading to dephasing and the MR signal decay. The blood T2* signal has been shown to decay with a complex behavior1, termed Non-Lorenztian, and thus is not adequately described by the traditional model of simplemono-exponential decay. Theoretical calculations show that diffusion narrowing substantially affects signal loss in our data. Over the past decade, several theoretical models have been proposed to describe this Non-Lorenztian behavior in the blood T2* signal in BOLD fMRI imaging. The goal of this project was to investigate different models which have been proposed over the years and determine a semi-phenomenological model for the T2* behaviorusing actual MR blood data

    Anisotropic susceptibility of ferromagnetic ultrathin Co films on vicinal Cu

    Get PDF
    We measure the magnetic susceptibility of ultrathin Co films with an in-plane uniaxial magnetic anisotropy grown on a vicinal Cu substrate. Above the Curie temperature the influence of the magnetic anisotropy can be investigated by means of the parallel and transverse susceptibilities along the easy and hard axes. By comparison with a theoretical analysis of the susceptibilities we determine the isotropic exchange interaction and the magnetic anisotropy. These calculations are performed in the framework of a Heisenberg model by means of a many-body Green's function method, since collective magnetic excitations are very important in two-dimensional magnets.Comment: 7 pages, 3 figure

    'Theory for the enhanced induced magnetization in coupled magnetic trilayers in the presence of spin fluctuations'

    Full text link
    Motivated by recent experiments, the effect of the interlayer exchange interaction JinterJ_{inter} on the magnetic properties of coupled Co/Cu/Ni trilayers is studied theoretically. Here the Ni film has a lower Curie temperature TC,NiT_{C,\rm Ni} than the Co film in case of decoupled layers. We show that by taking into account magnetic fluctuations the interlayer coupling induces a strong magnetization for T\gtsim T_{C,\rm Ni} in the Ni film. For an increasing JinterJ_{inter} the resonance-like peak of the longitudinal Ni susceptibility is shifted to larger temperatures, whereas its maximum value decreases strongly. A decreasing Ni film thickness enhances the induced Ni magnetization for T\gtsim T_{C,\rm Ni}. The measurements cannot be explained properly by a mean field estimate, which yields a ten times smaller effect. Thus, the observed magnetic properties indicate the strong effect of 2D magnetic fluctuations in these layered magnetic systems. The calculations are performed with the help of a Heisenberg Hamiltonian and a Green's function approach.Comment: 4 pages, 3 figure

    Field strength dependence of grey matter R2* on venous oxygenation

    Get PDF
    The relationship between venous blood oxygenation and change in transverse relaxation rate (Ξ”R2 *) plays a key role in calibrated BOLD fMRI. This relationship, defined by the parameter Ξ², has previously been determined using theoretical simulations and experimental measures. However, these earlier studies have been confounded by the change in venous cerebral blood volume (CBV) in response to functional tasks. This study used a double-echo gradient echo EPI scheme in conjunction with a graded isocapnic hyperoxic sequence to assess quantitatively the relationship between the fractional venous blood oxygenation (1-Yv) and transverse relaxation rate of grey matter (Ξ”R2 * GM), without inducing a change in vCBV. The results demonstrate that the relationship between Ξ”R2 * and fractional venous oxygenation at all magnet field strengths studied was adequately described by a linear relationship. The gradient of this relationship did not increase monotonically with field strength, which may be attributed to the relative contributions of intravascular and extravascular signals which will vary with both field strength and blood oxygenation

    Probe-based confocal laser endomicroscopy in diagnosis of diffuse cystic lung disease in SjΓΆgren’s syndrome

    Get PDF
    SjΓΆgren’s syndrome is systemic autoimmune disease characterized by lymphocytic infiltration of various organs with wide frequency of pulmonary involvement. Diffuse cystic lung disease in SjΓΆgren’s syndrome is a rare condition and requires differential diagnosis with other cystic pathologies such as lymphangioleyomiomatosis or Langerhans cell histiocytosis. Probe-based confocal laser endomicroscopy (pCLE) is a method of in vivo investigation of airways and lung tissue on microscopic level during bronchoscopy. We used this method in diffuse cystic lung disease caused by SjΓΆgren’s syndrome. The pCLE image showed a large number of fluorescent cells presumably lymphocytes in bronchioles, dilated alveolar spaces with fluid and thin alveolar walls. We think that the presence of the bronchiolar cells pattern can be used to differentiate between the pulmonary manifestations of SjΓΆgren's disease and other cystic lung diseases

    Π’ΡƒΠ±Π΅Ρ€ΠΊΡƒΠ»Π΅Π· Ρƒ взрослых ΠΈ Π΄Π΅Ρ‚Π΅ΠΉ Π² Π‘Π΅Π²Π΅Ρ€ΠΎ-Π—Π°ΠΏΠ°Π΄Π½ΠΎΠΌ Ρ„Π΅Π΄Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠΌ ΠΎΠΊΡ€ΡƒΠ³Π΅: Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° эпидСмиологичСских ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ ΠΈ ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΈ ΠΈΡ… ΠΎΡ†Π΅Π½ΠΊΠΈ

    Get PDF
    The epidemic situation is monitored by numerous rates that may not reflect it objectively which will subsequently lead to higher incidence rates and severe forms of tuberculosis in both adults and children in the regions with the most unfavorable situation.The objective: to evaluate epidemiological rates for tuberculosis in the Northwestern Federal District to identify the most significant, and assess the epidemic situation in the region using these most significant rates.Subjects and Methods. We analyzed the main epidemiological rates of pediatric tuberculosis according to federal statistics (Forms 8 and 33) in 11 districts of the Northwestern District in 2019-2021. Annual figures were obtained from open demographic data of the state statistics (https://www.fedstat.ru). Statistical analysis was pe`rformed using the free software R (v.3.5.1) and the commercial Statistical Package for the Social Sciences (SPSS Statistics for Windows, Version 24.0, IBM Corp., 2016). Hierarchical cluster analysis and k-means clustering were used with the selection of the lowest and highest values of rates. A formula is proposed for calculating the coefficient of full coverage with preventive screening (COP) for tuberculosis of the population which allows adjusting the analyzed epidemic rates taking into account the maximum coverage of the population with preventive screening and determining the accuracy of previous analysis.Results. According to the data obtained, in 2017 and 2018, Vologda Oblast and Nenets Autonomous Okrug were epidemically favorable regions, while in 2020 and 2021 Kaliningrad, Leningrad and Novgorod Oblasts were regarded as favorable regions that were steadily improving their performance. Regions with unfavorable tuberculosis situation include Pskov Oblast, St. Petersburg and the Komi Republic. At the same time, the first two regions occupy this position stably from 2017 to 2021. The use of the coefficient of low coverage with screening for tuberculosis made it possible to determine that Murmansk Oblast, St. Petersburg, Leningrad and Pskov Oblasts in 2020 and 2021 are prognostically unfavorable regions despite a decline in official tuberculosis rates. The data obtained correlate with a high percentage of positive tests with the tuberculosis recombinant tuberculosis allergen (TRA) in children in the regions mentioned above.Conclusions. The analysis of the data clearly demonstrates the possibility of determining the epidemically most favorable or unfavorable regions using four rates: coverage with preventive screening, incidence in the adult population, incidence in children aged 0 to 17 years, and tuberculosis mortality. Cluster analysis using these rates, calculation of rates using the developed coefficient of low coverage with screening for tuberculosis, and analysis of positive results of TRA test in children allows identifying the most epidemically unfavorable regions, despite the decrease in some rates that can be regarded as favorable.ΠœΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³ эпидСмичСской ситуации проводится с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ большого числа ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Π½Π΅ совсСм ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΈΠ²Π½ΠΎ ΠΎΡ‚Ρ€Π°ΠΆΠ°Ρ‚ΡŒ Π΅Π΅, Ρ‡Ρ‚ΠΎ Π² ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΌ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Ρ‚ ΠΊ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡŽ уровня заболСваСмости ΠΈ появлСнию тяТСлых Ρ„ΠΎΡ€ΠΌ Ρ‚ΡƒΠ±Π΅Ρ€ΠΊΡƒΠ»Π΅Π·Π° ΠΊΠ°ΠΊ Ρƒ взрослого насСлСния, Ρ‚Π°ΠΊ ΠΈ Ρƒ Π΄Π΅Ρ‚Π΅ΠΉ Π² Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ нСблагоприятных Ρ€Π΅Π³ΠΈΠΎΠ½Π°Ρ….ЦСль исслСдования: ΠΎΡ†Π΅Π½ΠΊΠ° эпидСмиологичСских ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ ΠΏΠΎ Ρ‚ΡƒΠ±Π΅Ρ€ΠΊΡƒΠ»Π΅Π·Ρƒ Π² Π‘Π΅Π²Π΅Ρ€ΠΎ-Π—Π°ΠΏΠ°Π΄Π½ΠΎΠΌ Ρ„Π΅Π΄Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠΌ ΠΎΠΊΡ€ΡƒΠ³Π΅ для выявлСния Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π·Π½Π°Ρ‡ΠΈΠΌΡ‹Ρ…, Π° Ρ‚Π°ΠΊΠΆΠ΅ эпидСмичСской ситуации Π² Ρ€Π΅Π³ΠΈΠΎΠ½Π΅ с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π·Π½Π°Ρ‡ΠΈΠΌΡ‹Ρ… ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π‘Ρ‹Π» ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· основных эпидСмиологичСских ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ ΠΏΠΎ Ρ‚ΡƒΠ±Π΅Ρ€ΠΊΡƒΠ»Π΅Π·Ρƒ Ρƒ Π΄Π΅Ρ‚Π΅ΠΉ ΠΏΠΎ Π΄Π°Π½Π½Ρ‹ΠΌ Ρ„Π΅Π΄Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ статистики (Ρ„ΠΎΡ€ΠΌΡ‹ β„– 8 ΠΈ β„– 33) Π² 11 ΠΎΠΊΡ€ΡƒΠ³Π°Ρ… Π‘Π΅Π²Π΅Ρ€ΠΎ-Π—Π°ΠΏΠ°Π΄Π½ΠΎΠ³ΠΎ Ρ€Π΅Π³ΠΈΠΎΠ½Π° Π·Π° ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ с 2019 ΠΏΠΎ 2021 Π³. Π•ΠΆΠ΅Π³ΠΎΠ΄Π½Ρ‹Π΅ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ ΠΈΠ· ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚Ρ‹Ρ… дСмографичСских Π΄Π°Π½Π½Ρ‹Ρ… государствСнной статистики (https://www.fedstat.ru). БтатистичСский Π°Π½Π°Π»ΠΈΠ· проводился с использованиСм свободной ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠΉ срСды вычислСний R (v.3.5.1) ΠΈ коммСрчСского ΠΏΠ°ΠΊΠ΅Ρ‚Π° ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠ³ΠΎ обСспСчСния Statistical Package for the Social Sciences (SPSS Statisticsfor Windows, вСрсия 24.0, IBM Corp., 2016). ΠŸΡ€ΠΈΠΌΠ΅Π½ΡΠ»ΠΈΡΡŒ иСрархичСский кластСрный Π°Π½Π°Π»ΠΈΠ· ΠΈ кластСризация ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ k-срСдних с Π²Ρ‹Π±ΠΎΡ€ΠΎΠΌ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π½ΠΈΠ·ΠΊΠΈΡ… ΠΈ высоких Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° расчСта коэффициСнта ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΎΡ…Π²Π°Ρ‚Π° профилактичСским обслСдованиСм (ПОН) Π½Π° Ρ‚ΡƒΠ±Π΅Ρ€ΠΊΡƒΠ»Π΅Π· насСлСния, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ позволяСт ΡΠΊΠΎΡ€Ρ€Π΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Π΅ эпидСмичСскиС ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ максимально ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΎΡ…Π²Π°Ρ‚Π° насСлСния ПОН ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ³ΠΎ Ρ€Π°Π½Π΅Π΅ Π°Π½Π°Π»ΠΈΠ·Π°.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдования. Богласно ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΌ Π΄Π°Π½Π½Ρ‹ΠΌ, Π² 2017 ΠΈ 2018 Π³. эпидСмичСски благоприятными Ρ€Π΅Π³ΠΈΠΎΠ½Π°ΠΌΠΈ Π±Ρ‹Π»ΠΈ Вологодская ΠΎΠ±Π»Π°ΡΡ‚ΡŒ ΠΈ НСнСцкий Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠ½Ρ‹ΠΉ ΠΎΠΊΡ€ΡƒΠ³, Ρ‚ΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ Π² 2020 ΠΈ 2021 Π³. ΠšΠ°Π»ΠΈΠ½ΠΈΠ½Π³Ρ€Π°Π΄ΡΠΊΠ°Ρ, ЛСнинградская ΠΈ НовгородскиС области расцСнСны ΠΊΠ°ΠΊ благоприятныС Ρ€Π΅Π³ΠΈΠΎΠ½Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎ ΡƒΠ»ΡƒΡ‡ΡˆΠ°ΡŽΡ‚ свои ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ. К нСблагоприятным Ρ€Π΅Π³ΠΈΠΎΠ½Π°ΠΌ относятся Псковская ΠΎΠ±Π»Π°ΡΡ‚ΡŒ, Π³. Π‘Π°Π½ΠΊΡ‚-ΠŸΠ΅Ρ‚Π΅Ρ€Π±ΡƒΡ€Π³ ΠΈ РСспублика Коми. ΠŸΡ€ΠΈ этом ΠΏΠ΅Ρ€Π²Ρ‹Π΅ Π΄Π²Π° Ρ€Π΅Π³ΠΈΠΎΠ½Π° Π·Π°Π½ΠΈΠΌΠ°ΡŽΡ‚ Π΄Π°Π½Π½ΡƒΡŽ ΠΏΠΎΠ·ΠΈΡ†ΠΈΡŽ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎ с 2017 ΠΏΠΎ 2021 Π³. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ коэффициСнта Π½ΠΈΠ·ΠΊΠΎΠ³ΠΎ ΠΎΡ…Π²Π°Ρ‚Π° ПОН Π½Π° Ρ‚ΡƒΠ±Π΅Ρ€ΠΊΡƒΠ»Π΅Π· ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΠœΡƒΡ€ΠΌΠ°Π½ΡΠΊΠ°Ρ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ, Π³. Π‘Π°Π½ΠΊΡ‚-ΠŸΠ΅Ρ‚Π΅Ρ€Π±ΡƒΡ€Π³, ЛСнинградская ΠΈ Псковская области Π² 2020 ΠΈ 2021 Π³. ΡΠ²Π»ΡΡŽΡ‚ΡΡ прогностичСски нСблагоприятными Ρ€Π΅Π³ΠΈΠΎΠ½Π°ΠΌΠΈ, нСсмотря Π½Π° сниТСниС ΠΎΡ„ΠΈΡ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ ΠΏΠΎ Ρ‚ΡƒΠ±Π΅Ρ€ΠΊΡƒΠ»Π΅Π·Ρƒ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΠΊΠΎΡ€Ρ€Π΅Π»ΠΈΡ€ΡƒΡŽΡ‚ с высоким ΠΏΡ€ΠΎΡ†Π΅Π½Ρ‚ΠΎΠΌ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡ€ΠΎΠ± с Π°Π»Π»Π΅Ρ€Π³Π΅Π½ΠΎΠΌ Ρ‚ΡƒΠ±Π΅Ρ€ΠΊΡƒΠ»Π΅Π·Π½Ρ‹ΠΌ Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½Ρ‹ΠΌ (АВР) Ρƒ Π΄Π΅Ρ‚Π΅ΠΉ Π² ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½Π½Ρ‹Ρ… Π²Ρ‹ΡˆΠ΅ Ρ€Π΅Π³ΠΈΠΎΠ½Π°Ρ….Π’Ρ‹Π²ΠΎΠ΄Ρ‹. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· Π΄Π°Π½Π½Ρ‹Ρ… наглядно дСмонстрируСт Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ опрСдСлСния эпидСмичСски Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ благоприятных ΠΈΠ»ΠΈ нСблагоприятных Ρ€Π΅Π³ΠΈΠΎΠ½ΠΎΠ², ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ показатСля: ΠΎΡ…Π²Π°Ρ‚ ПОН, ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒ заболСваСмости взрослого насСлСния, ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒ заболСваСмости дСтского насСлСния Π² возрастС ΠΎΡ‚ 0 Π΄ΠΎ 17 Π»Π΅Ρ‚ ΠΈ ΡΠΌΠ΅Ρ€Ρ‚Π½ΠΎΡΡ‚ΡŒ ΠΎΡ‚ Ρ‚ΡƒΠ±Π΅Ρ€ΠΊΡƒΠ»Π΅Π·Π°. ΠšΠ»Π°ΡΡ‚Π΅Ρ€Π½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ, расчСт ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠ³ΠΎ коэффициСнта Π½ΠΈΠ·ΠΊΠΎΠ³ΠΎ ΠΎΡ…Π²Π°Ρ‚Π° ПОН Π½Π° Ρ‚ΡƒΠ±Π΅Ρ€ΠΊΡƒΠ»Π΅Π· ΠΈ Π°Π½Π°Π»ΠΈΠ· ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² ΠΏΠΎ ΠΏΡ€ΠΎΠ±Π΅ с АВР Ρƒ Π΄Π΅Ρ‚Π΅ΠΉ позволяСт Π²Ρ‹ΡΠ²ΠΈΡ‚ΡŒ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ эпидСмичСски нСблагоприятныС Ρ€Π΅Π³ΠΈΠΎΠ½Ρ‹, нСсмотря сниТСниС ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ расцСнСны ΠΊΠ°ΠΊ благоприятныС
    • …
    corecore