3,436 research outputs found

    Modal Test of the NASA Mobile Launcher at Kennedy Space Center

    Get PDF
    The NASA Mobile Launcher (ML), located at Kennedy Space Center (KSC), has recently been modified to support the launch of the new NASA Space Launch System (SLS). The ML is a massive structureconsisting of a 345-foot tall tower attached to a two-story base, weighing approximately 10.5 million poundsthat will secure the SLS vehicle as it rolls to the launch pad on a Crawler Transporter, as well as provide a launch platform at the pad. The ML will also provide the boundary condition for an upcoming SLS Integrated Modal Test (IMT). To help correlate the ML math models prior to this modal test, and allow focus to remain on updating SLS vehicle models during the IMT, a ML-only experimental modal test was performed in June 2019. Excitation of the tower and platform was provided by five uniquely-designed test fixtures, each enclosing a hydraulic shaker, capable of exerting thousands of pounds of force into the structure. For modes not that were not sufficiently excited by the test fixture shakers, a specially-designed mobile drop tower provided impact excitation at additional locations of interest. The response of the ML was measured with a total of 361 accelerometers. Following the random vibration, sine sweep vibration, and modal impact testing, frequency response functions were calculated and modes were extracted for three different configurations of the ML in 0 Hz to 12 Hz frequency range. This paper will provide a case study in performing modal tests on large structures by discussing the Mobile Launcher, the test strategy, an overview of the test results, and recommendations for meeting a tight test schedule for a large-scale modal test

    ELAN as flexible annotation framework for sound and image processing detectors

    Get PDF
    Annotation of digital recordings in humanities research still is, to a largeextend, a process that is performed manually. This paper describes the firstpattern recognition based software components developed in the AVATecH projectand their integration in the annotation tool ELAN. AVATecH (AdvancingVideo/Audio Technology in Humanities Research) is a project that involves twoMax Planck Institutes (Max Planck Institute for Psycholinguistics, Nijmegen,Max Planck Institute for Social Anthropology, Halle) and two FraunhoferInstitutes (Fraunhofer-Institut für Intelligente Analyse- undInformationssysteme IAIS, Sankt Augustin, Fraunhofer Heinrich-Hertz-Institute,Berlin) and that aims to develop and implement audio and video technology forsemi-automatic annotation of heterogeneous media collections as they occur inmultimedia based research. The highly diverse nature of the digital recordingsstored in the archives of both Max Planck Institutes, poses a huge challenge tomost of the existing pattern recognition solutions and is a motivation to makesuch technology available to researchers in the humanities

    Micro-evaporators for kinetic exploration of phase diagrams

    Full text link
    We use pervaporation-based microfluidic devices to concentrate species in aqueous solutions with spatial and temporal control of the process. Using experiments and modelling, we quantitatively describe the advection-diffusion behavior of the concentration field of various solutions (electrolytes, colloids, etc) and demonstrate the potential of these devices as universal tools for the kinetic exploration of the phases and textures that form upon concentration

    Instabilities in Zakharov Equations for Laser Propagation in a Plasma

    Full text link
    F.Linares, G.Ponce, J-C.Saut have proved that a non-fully dispersive Zakharov system arising in the study of Laser-plasma interaction, is locally well posed in the whole space, for fields vanishing at infinity. Here we show that in the periodic case, seen as a model for fields non-vanishing at infinity, the system develops strong instabilities of Hadamard's type, implying that the Cauchy problem is strongly ill-posed

    Component variations and their effects on bipolar nickel-hydrogen cell performance

    Get PDF
    A 50 cell bipolar nickel-hydrogen battery was assembled to demonstrate the feasibility of constructing a high voltage stack of cells. Various component combinations were tested in this battery. The battery had approximately 1 ampere-hour of capacity and was constructed from components with an active area of 2" X 2". The components were parametrically varied to give a comparison of nickel electrodes, hydrogen electrodes, separators, fill procedures and electrolyte reservoir plate thicknesses. Groups of five cells were constructed using the same components; ten combinations were tested in all. The battery was thoroughly characterized at various change and discharge rates as well as with various pulse patterns and rates. Over a period of 1400 40% DOD LEO cycles some of the groups began to exhibit performance differences. In general, only separator variations had a significant effect on cell performance. It also appears that shunt currents may have been operating within the stack, resulting in electrolyte transfer from one cell to another, thus contributing to cell performance variations

    Involvement of N-6 adenine-specific DNA methyltransferase 1 (N6AMT1) in arsenic biomethylation and its role in arsenic-induced toxicity.

    Get PDF
    BackgroundIn humans, inorganic arsenic (iAs) is metabolized to methylated arsenical species in a multistep process mainly mediated by arsenic (+3 oxidation state) methyltransferase (AS3MT). Among these metabolites is monomethylarsonous acid (MMAIII), the most toxic arsenic species. A recent study in As3mt-knockout mice suggests that unidentified methyltransferases could be involved in alternative iAs methylation pathways. We found that yeast deletion mutants lacking MTQ2 were highly resistant to iAs exposure. The human ortholog of the yeast MTQ2 is N-6 adenine-specific DNA methyltransferase 1 (N6AMT1), encoding a putative methyltransferase.ObjectiveWe investigated the potential role of N6AMT1 in arsenic-induced toxicity.MethodsWe measured and compared the cytotoxicity induced by arsenicals and their metabolic profiles using inductively coupled plasma-mass spectrometry in UROtsa human urothelial cells with enhanced N6AMT1 expression and UROtsa vector control cells treated with different concentrations of either iAsIII or MMAIII.ResultsN6AMT1 was able to convert MMAIII to the less toxic dimethylarsonic acid (DMA) when overexpressed in UROtsa cells. The enhanced expression of N6AMT1 in UROtsa cells decreased cytotoxicity of both iAsIII and MMAIII. Moreover, N6AMT1 is expressed in many human tissues at variable levels, although at levels lower than those of AS3MT, supporting a potential participation in arsenic metabolism in vivo.ConclusionsConsidering that MMAIII is the most toxic arsenical, our data suggest that N6AMT1 has a significant role in determining susceptibility to arsenic toxicity and carcinogenicity because of its specific activity in methylating MMAIII to DMA and other unknown mechanisms

    Universal reduction of pressure between charged surfaces by long-wavelength surface charge modulation

    Full text link
    We predict theoretically that long-wavelength surface charge modulations universally reduce the pressure between the charged surfaces with counterions compared with the case of uniformly charged surfaces with the same average surface charge density. The physical origin of this effect is the fact that surface charge modulations always lead to enhanced counterion localization near the surfaces, and hence, fewer charges at the midplane. We confirm the last prediction with Monte Carlo simulations.Comment: 8 pages 1 figure, Europhys. Lett., in pres

    Re-examining Students’ Perception of E-Learning: An Australian Perspective

    Get PDF
    Purpose – Australian tertiary institutions are increasingly incorporating technologies, such as social media and Web 2.0 tools into teaching in response to changing student needs. The purpose of this paper is to revisit a fundamental question, frequently asked in marketing, “what do our ‘customers’ [students] think now?” This will help determine the effectiveness of application of these technologies in courses and teaching programs in a changing competitive educational environment. Design/methodology/approach – Using a mixed method approach, data were collected through 31 qualitative interviews and a survey of 231 university marketing students. Quantitative techniques included summary statistics, factor analysis and t-test. Findings – Results indicate while students’ perceived flexibility and better learning outcomes as positive aspects of e-learning, they have concerns about flexibility for self-paced learning, self-motivational issues, lack of human interaction and fostering teamwork. Research limitations/implications – The study is limited to one Australian university operating in domestic and international markets. However, the study needs to be replicated for better generalizability across the sector. Practical implications – The findings question the effectiveness of e-learning as an alternative approach to face-to-face learning pedagogy. However, regular review of current e-learning tools is needed to help match student and tertiary institution expectations. Originality/value – This study re-investigates students’ perception in relation to the benefits that e-learning is expected to yield. It is one of the few studies questioning whether these promised benefits are valued by the tertiary student fraternity
    corecore