10,716 research outputs found
Understanding Legislator Experiences of Family-Friendly Working Practices in Political Institutions
This is a post-peer-review, pre-copy edit version of an article published in Politics and Gender. © 2015, Cambridge University Press
Obliquities of Kepler Stars: Comparison of Single- and Multiple-Transit Systems
The stellar obliquity of a transiting planetary system can be constrained by
combining measurements of the star's rotation period, radius, and projected
rotational velocity. Here we present a hierarchical Bayesian technique for
recovering the obliquity distribution of a population of transiting planetary
systems, and apply it to a sample of 70 Kepler Objects of Interest. With ~95%
confidence we find that the obliquities of stars with only a single detected
transiting planet are systematically larger than those with multiple detected
transiting planets. This suggests that a substantial fraction of Kepler's
single-transiting systems represent dynamically hotter, less orderly systems
than the "pancake-flat" multiple-transiting systems.Comment: 8 pages, 7 figures, accepted to Ap
Discerning Exoplanet Migration Models Using Spin-Orbit Measurements
We investigate the current sample of exoplanet spin-orbit measurements to
determine whether a dominant planet migration channel can be identified, and at
what confidence. We use the predictions of Kozai migration plus tidal friction
(Fabrycky and Tremaine 2007) and planet-planet scattering (Nagasawa et al.
2008) as our misalignment models, and we allow for a fraction of intrinsically
aligned systems, explainable by disk migration. Bayesian model comparison
demonstrates that the current sample of 32 spin-orbit measurements strongly
favors a two-mode migration scenario combining planet-planet scattering and
disk migration over a single-mode Kozai migration scenario. Our analysis
indicates that between 34% and 76% of close-in planets (95% confidence)
migrated via planet-planet scattering. Separately analyzing the subsample of 12
stars with T_eff > 6250 K---which Winn et al. (2010) predict to be the only
type of stars to maintain their primordial misalignments---we find that the
data favor a single-mode scattering model over Kozai with 81% confidence. We
also assess the number of additional hot star spin-orbit measurements that will
likely be necessary to provide a more confident model selection, finding that
an additional 20-30 measurements has a >50% chance of resulting in a
95%-confident model selection, if the current model selection is correct. While
we test only the predictions of particular Kozai and scattering migration
models in this work, our methods may be used to test the predictions of any
other spin-orbit misaligning mechanism.Comment: 9 pages, 8 figures, ApJ responded to refere
HATS-1b: The First Transiting Planet Discovered by the HATSouth Survey
We report the discovery of HATS-1b, a transiting extrasolar planet orbiting
the moderately bright V=12.05 G dwarf star GSC 6652-00186, and the first planet
discovered by HATSouth, a global network of autonomous wide-field telescopes.
HATS-1b has a period P~3.4465 d, mass Mp~1.86MJ, and radius Rp~1.30RJ. The host
star has a mass of 0.99Msun, and radius of 1.04Rsun. The discovery light curve
of HATS-1b has near continuous coverage over several multi-day periods,
demonstrating the power of using a global network of telescopes to discover
transiting planets.Comment: Submitted to AJ 10 pages, 5 figures, 6 table
Radiation Damage and Recovery Properties of Common Plastics PEN (Polyethylene Naphthalate) and PET (Polyethylene Terephthalate) Using a 137Cs Gamma Ray Source Up To 1 MRad and 10 MRad
Polyethylene naphthalate (PEN) and polyethylene teraphthalate (PET) are cheap
and common polyester plastics used throughout the world in the manufacturing of
bottled drinks, containers for foodstuffs, and fibers used in clothing. These
plastics are also known organic scintillators with very good scintillation
properties. As particle physics experiments increase in energy and particle
flux density, so does radiation exposure to detector materials. It is therefore
important that scintillators be tested for radiation tolerance at these
generally unheard of doses. We tested samples of PEN and PET using laser
stimulated emission on separate tiles exposed to 1 MRad and 10 MRad gamma rays
with a 137Cs source. PEN exposed to 1 MRad and 10 MRad emit 71.4% and 46.7% of
the light of an undamaged tile, respectively, and maximally recover to 85.9%
and 79.5% after 5 and 9 days, respectively. PET exposed to 1 MRad and 10 MRad
emit 35.0% and 12.2% light, respectively, and maximally recover to 93.5% and
80.0% after 22 and 60 days, respectively
Sodium Absorption From the Exoplanetary Atmosphere of HD189733b Detected in the Optical Transmission Spectrum
We present the first ground-based detection of sodium absorption in the
transmission spectrum of an extrasolar planet. Absorption due to the atmosphere
of the extrasolar planet HD189733b is detected in both lines of the NaI
doublet. High spectral resolution observations were taken of eleven transits
with the High Resolution Spectrograph (HRS) on the 9.2 meter Hobby-Eberly
Telescope (HET). The NaI absorption in the transmission spectrum due to
HD189733b is (-67.2 +/- 20.7) x 10^-5 deeper in the ``narrow'' spectral band
that encompasses both lines relative to adjacent bands. The 1-sigma error
includes both random and systematic errors, and the detection is >3-sigma. This
amount of relative absorption in NaI for HD189733b is ~3x larger than detected
for HD209458b by Charbonneau et al. (2002), and indicates these two
hot-Jupiters may have significantly different atmospheric properties.Comment: 12 pages, 2 figures; Accepted for publication in ApJ Letter
Characterization of photomultiplier tubes in a novel operation mode for Secondary Emission Ionization Calorimetry
Hamamatsu single anode R7761 and multi-anode R5900-00-M16 Photomultiplier
Tubes have been characterized for use in a Secondary Emission (SE) Ionization
Calorimetry study. SE Ionization Calorimetry is a novel technique to measure
electromagnetic shower particles in extreme radiation environments. The
different operation modes used in these tests were developed by modifying the
conventional PMT bias circuit. These modifications were simple changes to the
arrangement of the voltage dividers of the baseboard circuits. The PMTs with
modified bases, referred to as operating in SE mode, are used as an SE detector
module in an SE calorimeter prototype, and placed between absorber materials
(Fe, Cu, Pb, W, etc.). Here, the technical design of different operation modes,
as well as the characterization measurements of both SE modes and the
conventional PMT mode are reported
Orbital Orientations of Exoplanets: HAT-P-4b is Prograde and HAT-P-14b is Retrograde
We present observations of the Rossiter-McLaughlin effect for two
exoplanetary systems, revealing the orientations of their orbits relative to
the rotation axes of their parent stars. HAT-P-4b is prograde, with a
sky-projected spin-orbit angle of lambda = -4.9 +/- 11.9 degrees. In contrast,
HAT-P-14b is retrograde, with lambda = 189.1 +/- 5.1 degrees. These results
conform with a previously noted pattern among the stellar hosts of close-in
giant planets: hotter stars have a wide range of obliquities and cooler stars
have low obliquities. This, in turn, suggests that three-body dynamics and
tidal dissipation are responsible for the short-period orbits of many
exoplanets. In addition, our data revealed a third body in the HAT-P-4 system,
which could be a second planet or a companion star.Comment: AJ, in press [8 pages
Twenty-One New Light Curves of OGLE-TR-56b: New System Parameters and Limits on Timing Variations
Although OGLE-TR-56b was the second transiting exoplanet discovered, only one
light curve, observed in 2006, has been published besides the discovery data.
We present twenty-one light curves of nineteen different transits observed
between July 2003 and July 2009 with the Magellan Telescopes and Gemini South.
The combined analysis of the new light curves confirms a slightly inflated
planetary radius relative to model predictions, with R_p = 1.378 +/- 0.090 R_J.
However, the values found for the transit duration, semimajor axis, and
inclination values differ significantly from the previous result, likely due to
systematic errors. The new semimajor axis and inclination, a = 0.01942 +/-
0.00015 AU and i = 73.72 +/- 0.18 degrees, are smaller than previously
reported, while the total duration, T_14 = 7931 +/- 38 s, is 18 minutes longer.
The transit midtimes have errors from 23 s to several minutes, and no evidence
is seen for transit midtime or duration variations. Similarly, no change is
seen in the orbital period, implying a nominal stellar tidal decay factor of
Q_* = 10^7, with a three-sigma lower limit of 10^5.7.Comment: 14 pages, 5 figures, accepted to Ap
- …
