16,885 research outputs found

    Orbital-transverse density-wave instabilities in iron-based superconductors

    Full text link
    Besides the conventional spin-density-wave (SDW) state, a new kind of orbital-transverse density-wave (OTDW) state is shown to exist generally in multi-orbital systems. We demonstrate that the orbital character of Fermi surface nesting plays an important role in density responses. The relationship between antiferromagnetism and structural phase transition in LaFeAsO (1111) and BaFe2_2As2_2 (122) compounds of iron-based superconductors may be understood in terms of the interplay between the SDW and OTDW with a five-orbital Hamiltonian. We propose that the essential difference between 1111 and 122 compounds is crucially determined by the presence of the two-dimensional dxyd_{xy}-like Fermi surface around (0,0) being only in 1111 parent compounds.Comment: several parts were rewritten for clarity. 6 pages, 3 figures, 1 tabl

    Tropical forest restoration: Fast resilience of plant biomass contrasts with slow recovery of stable soil C stocks

    Get PDF
    Due to intensifying human disturbance, over half of the world's tropical forests are reforested or afforested secondary forests or plantations. Understanding the resilience of carbon (C) stocks in these forests, and estimating the extent to which they can provide equivalent carbon (C) sequestration and stabilization to the old growth forest they replace, is critical for the global C balance. In this study, we combined estimates of biomass C stocks with a detailed assessment of soil C pools in bare land, Eucalyptus plantation, secondary forest and natural old-growth forest after over 50 years of forest restoration in a degraded tropical region of South China. We used isotope studies, density fractionation and physical fractionation to determine the age and stability of soil C pools at different soil depths. After 52 years, the secondary forests had equivalent biomass C stocks to natural forest, whereas soil C stocks were still much higher in natural forest (97.42 t/ha) than in secondary forest (58.75 t/ha) or Eucalyptus plantation (38.99 t/ha) and lowest in bare land (19.9 t/ha). Analysis of δ13C values revealed that most of the C in the soil surface horizons in the secondary forest was new C, with a limited increase of more recalcitrant old C, and limited accumulation of C in deeper soil horizons. However, occlusion of C in microaggregates in the surface soil layer was similar across forested sites, which suggests that there is great potential for additional soil C sequestration and stabilization in the secondary forest and Eucalyptus plantation. Collectively, our results demonstrate that reforestation on degraded tropical land can restore biomass C and surface soil C stocks within a few decades, but much longer recovery times are needed to restore recalcitrant C pools and C stocks at depth. Repeated harvesting and disturbance in rotation plantations had a substantial negative impact on the recovery of soil C stocks. We suggest that current calculations of soil C in secondary tropical forests (e.g. IPCC Guidelines for National Greenhouse Gas Inventories) could overestimate soil C sequestration and stabilization levels in secondary forests and plantations

    X-ray and UV spectroscopy of Galactic diffuse hot gas along the LMC X--3 sight line

    Full text link
    We present Suzaku spectra of X-ray emission in the fields just off the LMC X-3 sight line. OVII, OVIII, and NeIX emission lines are clearly detected, suggesting the presence of an optically thin thermal plasma with an average temperature of 2.4E6. This temperature is significantly higher than that inferred from existing X-ray absorption line data obtained with Chandra grating observations of LMC X-3, strongly suggesting that the gas is not isothermal. We then jointly analyze these data to characterize the spatial and temperature distributions of the gas. Assuming a vertical exponential Galactic disk model, we estimate the gas temperature and density at the Galactic plane and their scale heights as 3.6(2.9, 4.7)E6 K and 1.4(0.3, 3.4)E-3 cm^{-3} and 1.4(0.2, 5.2) kpc and 2.8(1.0,6.4)2.8(1.0, 6.4) kpc, respectively. This characterization can account for all the \ovi line absorption, as observed in a FUSE spectrum of LMC X-3, but only predicts less than one tenth of the OVI line emission intensity typically detected at high Galactic latitudes. The bulk of the OVI emission most likely arises at interfaces between cool and hot gases.Comment: 10 pages, 7 figures, 3 tables, accepted for publication in ApJ, 200

    Candidate MKiD nucleus 106Rh in triaxial relativistic mean-field approach with time-odd fields

    Full text link
    The configuration-fixed constrained triaxial relativistic mean-field approach is extended by including time-odd fields and applied to study the candidate multiple chiral doublets (MKiD) nucleus 106Rh. The energy contribution from time-odd fields and microscopical evaluation of center-of-mass correction as well as the modification of triaxial deformation parameters beta, gamma due to the time-odd fields are investigated. The contributions of the time-odd fields to the total energy are 0.1-0.3 MeV and they modify slightly the gamma values. However, the previously predicted multiple chiral doublets still exist.Comment: 9 pages, 3 figures, accepted for publication as a Brief Report in Physical Review
    • …
    corecore