21 research outputs found

    Validation of ozone measurements from the Atmospheric Chemistry Experiment (ACE)

    Get PDF
    This paper presents extensive bias determination analyses of ozone observations from the Atmospheric Chemistry Experiment (ACE) satellite instruments: the ACE Fourier Transform Spectrometer (ACE-FTS) and the Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation (ACE-MAESTRO) instrument. Here we compare the latest ozone data products from ACE-FTS and ACE-MAESTRO with coincident observations from nearly 20 satellite-borne, airborne, balloon-borne and ground-based instruments, by analysing volume mixing ratio profiles and partial column densities. The ACE-FTS version 2.2 Ozone Update product reports more ozone than most correlative measurements from the upper troposphere to the lower mesosphere. At altitude levels from 16 to 44 km, the average values of the mean relative differences are nearly all within +1 to +8%. At higher altitudes (45 60 km), the ACE-FTS ozone amounts are significantly larger than those of the comparison instruments, with mean relative differences of up to +40% (about + 20% on average). For the ACE-MAESTRO version 1.2 ozone data product, mean relative differences are within +/- 10% (average values within +/- 6%) between 18 and 40 km for both the sunrise and sunset measurements. At higher altitudes (similar to 35-55 km), systematic biases of opposite sign are found between the ACE-MAESTRO sunrise and sunset observations. While ozone amounts derived from the ACE-MAESTRO sunrise occultation data are often smaller than the coincident observations (with mean relative differences down to -10%), the sunset occultation profiles for ACE-MAESTRO show results that are qualitatively similar to ACE-FTS, indicating a large positive bias (mean relative differences within +10 to +30%) in the 45-55 km altitude range. In contrast, there is no significant systematic difference in bias found for the ACE-FTS sunrise and sunset measurements

    Conference Highlights of the 16th International Conference on Human Retrovirology: HTLV and Related Retroviruses, 26–30 June 2013, Montreal, Canada

    Full text link

    Soil carbon: a critical natural resource widescale goals, urgent actions

    No full text
    Across the world, soil organic carbon (SOC) is decreasing due to changes in land use such as the conversion of natural systems to food or bioenergy production systems. The losses of SOC have impacted crop productivity and other ecosystem services adversely. One of the grand challenges for society is to manage soil carbon stocks to optimize the mix of five essential services – provisioning of food, water and energy; maintaining biodiversity; and regulating climate. Scientific research has helped develop an understanding of the general SOC dynamics and characteristics; the influence of soil management on SOC; and management practices that can restore SOC and reduce or stop carbon losses from terrestrial ecosystems. As the uptake of these practices has been very limited, it is necessary to identify and overcome barriers to the adoption of practices that enhance SOC. Actions should focus on multiple ecosystem services to optimize efforts and the benefits of SOC. Given that depleting SOC degrades most soil services, we suggest that in the coming decades increases in SOC will concurrently benefit all five of the essential services. The aim of this chapter is to identify and evaluate wide-scale goals for maximizing the benefits of SOC on the five essential services, and to define the short-term steps towards achieving these goals. Stopping the losses of SOC in terrestrial ecosystems is identified as the overall priority. In moving towards the realization of multiple SOC benefits, we need to understand better the relationships between SOC and individual services. Interactions between services occur at multiple spatial scales, from farm through landscape to subnational, national and global scales. Coordinated national and international responses to SOC losses and degradation of the five essential services are needed to empower SOC actions at local levels that have benefits on the larger scales. We propose the creation of a global research programme to expand the scientific understanding of SOC and its contribution to the five essential services. This should address the challenges and uncertainties associated with the management of SOC for multiple benefits. This research programme must include a strong education and outreach component to address concerns to different communities outside academia

    Validation of ACE-FTS v2.2 methane profiles from the upper troposphere to the lower mesosphere

    Get PDF
    The ACE-FTS (Atmospheric Chemistry Experiment – Fourier Transform Spectrometer) solar occultation instrument that was launched onboard the Canadian SCISAT-1 satellite in August 2003 is measuring vertical profiles from the upper troposphere to the lower mesosphere for a large number of atmospheric constituents. Methane is one of the key species. The version v2.2 data of the ACE-FTS CH4 data have been compared to correlative satellite, balloon-borne and ground-based Fourier transform infrared remote sensing data to assess their quality. The comparison results indicate that the accuracy of the data is within 10% in the upper troposphere – lower stratosphere, and within 25% in the middle and higher stratosphere up to the lower mesosphere (<60 km). The observed differences are generally consistent with reported systematic uncertainties. ACE-FTS is also shown to reproduce the variability of methane in the stratosphere and lower mesosphere

    From model intercomparison toward benchmark UV spectra for six real atmospheric cases

    Get PDF
    The validity of a radiative transfer model can be checked either by comparing its results with measurements or with solutions for artificial cases. Unfortunately, neither type of comparison can guarantee that the spectral UV surface irradiance is accurately calculated for real atmospheric cases. There is a need therefore for benchmarks, i.e., standard results that can be used as a validation tool for UV radiation models. In this paper we give such benchmarks for six cloud-free situations. The chosen cases are characterized by different values of solar zenith angle, ozone column, aerosol loading, and surface albedo. Observations are also available for these cases to allow a further comparison between model results and measurements. An intercomparison of 12 numerical models is used to construct the benchmarks. Each model is supplied with identical input data, and a distinction is made between models that assume a planeparallel geometry and those that use a pseudospherical approximation. Differences remain between the model results, because of different treatments of the input data set. Calculations of direct and global transmission and direct and global irradiance are within 3% for wavelengths longer than 320 nm. For the low-Sun cases the calculations are within 10% for wavelengths longer than 300 nm. On the basis of these calculations, six benchmark UV spectra (295–400 nm) are established with a standard deviation of 2%. Relative standard deviations are higher for the lowest absolute intensities at low Sun (5% at 300 nm). The variation between models is typically less than the variation seen between model and measurement. Differences between the benchmarks and the observed spectra are mainly due to the uncertainty in the input parameters. In four of the six cases the benchmarks agree with the observed spectra within 13% over the whole UV spectral region

    Determining the infrared radiative effects of Saharan dust: A radiative transfer modelling study based on vertically resolved measurements at Lampedusa

    No full text
    Detailed measurements of radiation, atmospheric and aerosol properties were carried out in summer 2013 during the Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region (ADRIMED) campaign in the framework of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx) experiment. This study focusses on the characterization of infrared (IR) optical properties and direct radiative effects of mineral dust, based on three vertical profiles of atmospheric and aerosol properties and IR broadband and narrowband radiation from airborne measurements, made in conjunction with radiosonde and ground-based observations at Lampedusa, in the central Mediterranean. Satellite IR spectra from the Infrared Atmospheric Sounder Interferometer (IASI) are also included in the analysis. The atmospheric and aerosol properties are used as input to a radiative transfer model, and various IR radiation parameters (upward and downward irradiance, nadir and zenith brightness temperature at different altitudes) are calculated and compared with observations. The model calculations are made for different sets of dust particle size distribution (PSD) and refractive index (RI), derived from observations and from the literature. The main results of the analysis are that the IR dust radiative forcing is non-negligible and strongly depends on PSD and RI. When calculations are made using the in situ measured size distribution, it is possible to identify the refractive index that produces the best match with observed IR irradiances and brightness temperatures (BTs). The most appropriate refractive indices correspond to those determined from independent measurements of mineral dust aerosols from the source regions (Tunisia, Algeria, Morocco) of dust transported over Lampedusa, suggesting that differences in the source properties should be taken into account. With the in situ size distribution and the most appropriate refractive index the estimated dust IR radiative forcing efficiency is +23.7Wg-2at the surface,-7.9Wg-2within the atmosphere, and +15.8Wg-2at the top of the atmosphere. The use of column-integrated dust PSD from AERONET may also produce a good agreement with measured irradiances and BTs, but with significantly different values of the RI. This implies large differences, up to a factor of 2.5 at surface, in the estimated dust radiative forcing, and in the IR heating rate. This study shows that spectrally resolved measurements of BTs are important to better constrain the dust IR optical properties, and to obtain a reliable estimate of its radiative effects. Efforts should be directed at obtaining an improved description of the dust size distribution and its vertical distribution, as well as at including regionally resolved optical properties

    Determining the infrared radiative effects of Saharan dust: a radiative transfer modelling study based on vertically resolved measurements at Lampedusa

    Get PDF
    International audienceDetailed measurements of radiation, atmospheric and aerosol properties were carried out in summer 2013 during the Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region (ADRIMED) campaign in the framework of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx) experiment. This study focusses on the characterization of infrared (IR) optical properties and direct radiative effects of mineral dust, based on three vertical profiles of atmospheric and aerosol properties and IR broad-band and narrowband radiation from airborne measurements, made in conjunction with radiosonde and ground-based observations at Lampedusa, in the central Mediterranean. Satellite IR spectra from the Infrared Atmospheric Sounder Inter-ferometer (IASI) are also included in the analysis. The atmospheric and aerosol properties are used as input to a radiative transfer model, and various IR radiation parameters (upward and downward irradiance, nadir and zenith brightness temperature at different altitudes) are calculated and compared with observations. The model calculations are made for different sets of dust particle size distribution (PSD) and refrac-tive index (RI), derived from observations and from the literature. The main results of the analysis are that the IR dust radiative forcing is non-negligible and strongly depends on PSD and RI. When calculations are made using the in situ measured size distribution, it is possible to identify the re-fractive index that produces the best match with observed IR irradiances and brightness temperatures (BTs). The most appropriate refractive indices correspond to those determined from independent measurements of mineral dust aerosols from the source regions (Tunisia, Algeria, Morocco) of dust transported over Lampedusa, suggesting that differences in the source properties should be taken into account. With the in situ size distribution and the most appropriate refractive index the estimated dust IR radiative forcing efficiency is +23.7 W m −2 at the surface, −7.9 W m −2 within the atmosphere , and +15.8 W m −2 at the top of the atmosphere. The use of column-integrated dust PSD from AERONET may also produce a good agreement with measured irradiance
    corecore