89 research outputs found
Evidence of photospheric vortex flows at supergranular junctions observed by FG/SOT (Hinode)
Twisting motions of different nature are observed in several layers of the
solar atmosphere. Chromospheric sunspot whorls and rotation of sunspots or even
higher up in the lower corona sigmoids are examples of the large scale twisted
topology of many solar features. Nevertheless, their occurrence at large scale
in the quiet photosphere has not been investigated. The present study reveals
the existence of vortex flows located at the supergranular junctions of the
quiet Sun. We use a 1-hour and a 5-hour time series of the granulation in Blue
continuum and G-band images from FG/SOT to derive the photospheric flows. A
feature tracking technique called Balltracking is performed to track the
granules and reveal the underlying flow fields. In both time series we identify
long-lasting vortex flow located at supergranular junctions. The first vortex
flow lasts at least 1 hour and is ~20-arcsec-wide (~15.5 Mm). The second vortex
flow lasts more than 2 hours and is ~27-arcsec-wide (~21 Mm).Comment: 4 pages, 10 figure
Solar Flares as Cascades of Reconnecting Magnetic Loops
A model for the solar coronal magnetic field is proposed where multiple
directed loops evolve in space and time. Loops injected at small scales are
anchored by footpoints of opposite polarity moving randomly on a surface.
Nearby footpoints of the same polarity aggregate, and loops can reconnect when
they collide. This may trigger a cascade of further reconnection, representing
a solar flare. Numerical simulations show that a power law distribution of
flare energies emerges, associated with a scale free network of loops,
indicating self-organized criticality.Comment: 4 pages, 4 figures, To be published in Phys. Rev. Let
The Dynamic Formation of Prominence Condensations
We present simulations of a model for the formation of a prominence
condensation in a coronal loop. The key idea behind the model is that the
spatial localization of loop heating near the chromosphere leads to a
catastrophic cooling in the corona (Antiochos & Klimchuk 1991). Using a new
adaptive grid code, we simulate the complete growth of a condensation, and find
that after approx. 5,000 s it reaches a quasi-steady state. We show that the
size and the growth time of the condensation are in good agreement with data,
and discuss the implications of the model for coronal heating and SOHO/TRACE
observations.Comment: Astrophysical Journal latex file, 20 pages, 7 b-w figures (gif files
A nanoflare model for active region radiance: application of artificial neural networks
Context. Nanoflares are small impulsive bursts of energy that blend with and
possibly make up much of the solar background emission. Determining their
frequency and energy input is central to understanding the heating of the solar
corona. One method is to extrapolate the energy frequency distribution of
larger individually observed flares to lower energies. Only if the power law
exponent is greater than 2, is it considered possible that nanoflares
contribute significantly to the energy input.
Aims. Time sequences of ultraviolet line radiances observed in the corona of
an active region are modelled with the aim of determining the power law
exponent of the nanoflare energy distribution.
Methods. A simple nanoflare model based on three key parameters (the flare
rate, the flare duration time, and the power law exponent of the flare energy
frequency distribution) is used to simulate emission line radiances from the
ions Fe XIX, Ca XIII, and Si iii, observed by SUMER in the corona of an active
region as it rotates around the east limb of the Sun. Light curve pattern
recognition by an Artificial Neural Network (ANN) scheme is used to determine
the values.
Results. The power law exponents, alpha 2.8, 2.8, and 2.6 for Fe XIX, Ca
XIII, and Si iii respectively.
Conclusions. The light curve simulations imply a power law exponent greater
than the critical value of 2 for all ion species. This implies that if the
energy of flare-like events is extrapolated to low energies, nanoflares could
provide a significant contribution to the heating of active region coronae.Comment: 4 pages, 5 figure
Structure and Dynamics of the Sun's Open Magnetic Field
The solar magnetic field is the primary agent that drives solar activity and
couples the Sun to the Heliosphere. Although the details of this coupling
depend on the quantitative properties of the field, many important aspects of
the corona - solar wind connection can be understood by considering only the
general topological properties of those regions on the Sun where the field
extends from the photosphere out to interplanetary space, the so-called open
field regions that are usually observed as coronal holes. From the simple
assumptions that underlie the standard quasi-steady corona-wind theoretical
models, and that are likely to hold for the Sun, as well, we derive two
conjectures on the possible structure and dynamics of coronal holes: (1)
Coronal holes are unique in that every unipolar region on the photosphere can
contain at most one coronal hole. (2) Coronal holes of nested polarity regions
must themselves be nested. Magnetic reconnection plays the central role in
enforcing these constraints on the field topology. From these conjectures we
derive additional properties for the topology of open field regions, and
propose several observational predictions for both the slowly varying and
transient corona/solar wind.Comment: 26 pages, 6 figure
Properties of solar polar coronal plumes constrained by Ultraviolet Coronagraph Spectrometer data
We investigate the plasma dynamics (outflow speed and turbulence) inside
polar plumes. We compare line profiles (mainly of \ion{O}{6}) observed by the
UVCS instrument on SOHO at the minimum of solar cycle 22-23 with model
calculations. We consider Maxwellian velocity distributions with different
widths in plume and inter-plume regions. Electron densities are assumed to be
enhanced in plumes and to approach inter-plume values with increasing height.
Different combinations of the outflow and turbulence velocity in the plume
regions are considered. We compute line profiles and total intensities of the
\ion{H}{1} Ly and the \ion{O}{6} doublets. The observed profile shapes
and intensities are reproduced best by a small solar wind speed at low
altitudes in plumes that increases with height to reach ambient inter-plume
values above roughly 3-4 R_\sun combined with a similar variation of the
width of the velocity distribution of the scattering atoms/ions. We also find
that plumes very close to the pole give narrow profiles at heights above 2.5
R_\sun, which are not observed. This suggests a tendency for plumes to be
located away from the pole. We find that the inclusion of plumes in the model
computations provides an improved correspondence with the observations and
confirms previous results showing that published UVCS observations in polar
coronal holes can be roughly reproduced without the need for large temperature
anisotropy. The latitude distributions of plumes and magnetic flux
distributions are studied by analyzing data from different instruments on SOHO
and with SOLIS.Comment: 11 figure
Physics of Solar Prominences: II - Magnetic Structure and Dynamics
Observations and models of solar prominences are reviewed. We focus on
non-eruptive prominences, and describe recent progress in four areas of
prominence research: (1) magnetic structure deduced from observations and
models, (2) the dynamics of prominence plasmas (formation and flows), (3)
Magneto-hydrodynamic (MHD) waves in prominences and (4) the formation and
large-scale patterns of the filament channels in which prominences are located.
Finally, several outstanding issues in prominence research are discussed, along
with observations and models required to resolve them.Comment: 75 pages, 31 pictures, review pape
On Solving the Coronal Heating Problem
This article assesses the current state of understanding of coronal heating,
outlines the key elements of a comprehensive strategy for solving the problem,
and warns of obstacles that must be overcome along the way.Comment: Accepted by Solar Physics; Published by Solar Physic
Damping mechanisms for oscillations in solar prominences
Small amplitude oscillations are a commonly observed feature in
prominences/filaments. These oscillations appear to be of local nature, are
associated to the fine structure of prominence plasmas, and simultaneous flows
and counterflows are also present. The existing observational evidence reveals
that small amplitude oscillations, after excited, are damped in short spatial
and temporal scales by some as yet not well determined physical mechanism(s).
Commonly, these oscillations have been interpreted in terms of linear
magnetohydrodynamic (MHD) waves, and this paper reviews the theoretical damping
mechanisms that have been recently put forward in order to explain the observed
attenuation scales. These mechanisms include thermal effects, through
non-adiabatic processes, mass flows, resonant damping in non-uniform media, and
partial ionization effects. The relevance of each mechanism is assessed by
comparing the spatial and time scales produced by each of them with those
obtained from observations. Also, the application of the latest theoretical
results to perform prominence seismology is discussed, aiming to determine
physical parameters in prominence plasmas that are difficult to measure by
direct means.Comment: 36 pages, 16 figures, Space Science Reviews (accepted
The coexistence of peace and conflict in South America: toward a new conceptualization of types of peace
South America's predominant democratic regimes and its increasing interdependence on regional trade have not precluded the emergence of militarized crises between Colombia and Venezuela or the revival of boundary claims between Chile and Peru. This way, how can we characterize a zone that, in spite of its flourishing democracy and dense economic ties, remain involved in territorial disputes for whose resolution the use of force has not yet been discarded? This article contends that existing classifications of zones of peace are not adequate to explain this unusual coexistence. Thus, its main purpose is to develop a new analytical category of regional peace for assessing this phenomenon: the hybrid peace. It aims to research the evolution of security systems in South America during the previous century and build a new, threefold classification of peace zones: negative peace zones, hybrid peace zones, and positive peace zones
- …
