247 research outputs found
Melanoma cells break down LPA to establish local gradients that drive chemotactic dispersal.
The high mortality of melanoma is caused by rapid spread of cancer cells, which occurs unusually early in tumour evolution. Unlike most solid tumours, thickness rather than cytological markers or differentiation is the best guide to metastatic potential. Multiple stimuli that drive melanoma cell migration have been described, but it is not clear which are responsible for invasion, nor if chemotactic gradients exist in real tumours. In a chamber-based assay for melanoma dispersal, we find that cells migrate efficiently away from one another, even in initially homogeneous medium. This dispersal is driven by positive chemotaxis rather than chemorepulsion or contact inhibition. The principal chemoattractant, unexpectedly active across all tumour stages, is the lipid agonist lysophosphatidic acid (LPA) acting through the LPA receptor LPAR1. LPA induces chemotaxis of remarkable accuracy, and is both necessary and sufficient for chemotaxis and invasion in 2-D and 3-D assays. Growth factors, often described as tumour attractants, cause negligible chemotaxis themselves, but potentiate chemotaxis to LPA. Cells rapidly break down LPA present at substantial levels in culture medium and normal skin to generate outward-facing gradients. We measure LPA gradients across the margins of melanomas in vivo, confirming the physiological importance of our results. We conclude that LPA chemotaxis provides a strong drive for melanoma cells to invade outwards. Cells create their own gradients by acting as a sink, breaking down locally present LPA, and thus forming a gradient that is low in the tumour and high in the surrounding areas. The key step is not acquisition of sensitivity to the chemoattractant, but rather the tumour growing to break down enough LPA to form a gradient. Thus the stimulus that drives cell dispersal is not the presence of LPA itself, but the self-generated, outward-directed gradient
Search for weakly interacting sub-eV particles with the OSQAR laser-based experiment: results and perspectives
Recent theoretical and experimental studies highlight the possibility of new
fundamental particle physics beyond the Standard Model that can be probed by
sub-eV energy experiments. The OSQAR photon regeneration experiment looks for
"Light Shining through a Wall" (LSW) from the quantum oscillation of optical
photons into "Weakly Interacting Sub-eV Particles" (WISPs), like axion or
axion-like particles (ALPs), in a 9 T transverse magnetic field over the
unprecedented length of m. No excess of events has been
detected over the background. The di-photon couplings of possible new light
scalar and pseudo-scalar particles can be constrained in the massless limit to
be less than GeV. These results are very close to the
most stringent laboratory constraints obtained for the coupling of ALPs to two
photons. Plans for further improving the sensitivity of the OSQAR experiment
are presented.Comment: 7 pages, 7 figure
Mitotic catenation is monitored and resolved by a PKCε-regulated pathway.
Exit from mitosis is controlled by silencing of the spindle assembly checkpoint (SAC). It is important that preceding exit, all sister chromatid pairs are correctly bioriented, and that residual catenation is resolved, permitting complete sister chromatid separation in the ensuing anaphase. Here we determine that the metaphase response to catenation in mammalian cells operates through PKCε. The PKCε-controlled pathway regulates exit from the SAC only when mitotic cells are challenged by retained catenation and this delayed exit is characterized by BubR1-high and Mad2-low kinetochores. In addition, we show that this pathway is necessary to facilitate resolution of retained catenanes in mitosis. When delayed by catenation in mitosis, inhibition of PKCε results in premature entry into anaphase with PICH-positive strands and chromosome bridging. These findings demonstrate the importance of PKCε-mediated regulation in protection from loss of chromosome integrity in cells failing to resolve catenation in G2
Co-Transport of Polycyclic Aromatic Hydrocarbons by Motile Microorganisms Leads to Enhanced Mass Transfer under Diffusive Conditions.
The
environmental chemodynamics of hydrophobic organic chemicals
(HOCs) are often rate-limited by diffusion in stagnant boundary layers.
This study investigated whether motile microorganisms can act as microbial
carriers that enhance mass transfer of HOCs through diffusive boundary
layers. A new experimental system was developed that allows (1) generation
of concentration gradients of HOCs under the microscope, (2) exposure
and direct observation of microorganisms in such gradients, and (3)
quantification of HOC mass transfer. Silicone O-rings were integrated
into a Dunn chemotaxis chamber to serve as sink and source for polycyclic
aromatic hydrocarbons (PAHs). This resulted in stable concentration
gradients in water (>24 h). Adding the model organism <i>Tetrahymena
pyriformis</i> to the experimental system enhanced PAH mass transfer
up to hundred-fold (benzo[a]pyrene). Increasing mass transfer enhancement
with hydrophobicity indicated PAH co-transport with the motile organisms.
Fluorescence microscopy confirmed such transport. The effective diffusivity
of <i>T. pyriformis</i>, determined by video imaging microscopy,
was found to exceed molecular diffusivities of the PAHs up to four-fold.
Cell-bound PAH fractions were determined to range from 28% (naphthalene)
to 92% (pyrene). Motile microorganisms can therefore function as effective
carriers for HOCs under diffusive conditions and might significantly
enhance mobility and availability of HOCs
Wiskott-Aldrich syndrome protein deficiency in innate immune cells leads to mucosal immune dysregulation and colitis in mice
BACKGROUND & AIMS: Immunodeficiency and autoimmune sequelae, including colitis, develop in patients and mice deficient in Wiskott-Aldrich Syndrome protein (WASP), a hematopoietic-specific intracellular signaling molecule that regulates the actin cytoskeleton. Development of colitis in WASP-deficient mice requires lymphocytes; transfer of T cells is sufficient to induce colitis in immunodeficient mice. We investigated the interactions between innate and adaptive immune cells in mucosal regulation during development of T-cell-mediated colitis in mice with WASP-deficient cells of the innate immune system. METHODS: Naïve and/or regulatory CD4(+) T cells were transferred from 129 SvEv mice into RAG-2 deficient (RAG-2 KO) mice or mice lacking WASP and RAG-2 (WRDKO). Animals were observed for the development of colitis; effector and regulatory functions of innate immune and T cells were analyzed with in vivo and in vitro assays. RESULTS: Transfer of unfractionated CD4(+) T cells induced severe colitis in WRDKO, but not RAG-2 KO, mice. Naïve wild-type T cells had higher levels of effector activity and regulatory T cells had reduced suppressive function when transferred into WRDKO mice compared to RAG-2 KO mice. Regulatory T-cell proliferation, generation, and maintenance of FoxP3 expression were reduced in WRDKO recipients, and associated with reduced numbers of CD103(+) tolerogenic dendritic cells and levels of interleukin (IL)-10. Administration of IL-10 prevented induction of colitis following transfer of T cells into WRDKO mice. CONCLUSIONS: Defective interactions between WASP-deficient innate immune cells and normal T cells disrupt mucosal regulation, potentially by altering the functions of tolerogenic dendritic cells, production of IL-10, and homeostasis of regulatory T cells
Study of the chemotactic response of multicellular spheroids in a microfluidic device
YesWe report the first application of a microfluidic device to observe chemotactic migration in
multicellular spheroids. A microfluidic device was designed comprising a central microchamber
and two lateral channels through which reagents can be introduced. Multicellular
spheroids were embedded in collagen and introduced to the microchamber. A gradient of
fetal bovine serum (FBS) was established across the central chamber by addition of growth
media containing serum into one of the lateral channels. We observe that spheroids of oral
squamous carcinoma cells OSC–19 invade collectively in the direction of the gradient of
FBS. This invasion is more directional and aggressive than that observed for individual cells
in the same experimental setup. In contrast to spheroids of OSC–19, U87-MG multicellular
spheroids migrate as individual cells. A study of the exposure of spheroids to the chemoattractant
shows that the rate of diffusion into the spheroid is slow and thus, the chemoattractant
wave engulfs the spheroid before diffusing through it.This work has been supported by National Research Program of Spain (DPI2011-28262-c04-01) and by the project "MICROANGIOTHECAN" (CIBERBBN, IMIBIC and SEOM). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
The contributions of muscarinic receptors and changes in plasma aldosterone levels to the anti-hypertensive effect of Tulbaghia violacea
Background: Tulbaghia violacea Harv. (Alliaceae) is used to treat various ailments, including hypertension (HTN) in
South Africa. This study aims to evaluate the contributions of muscarinic receptors and changes in plasma
aldosterone levels to its anti-hypertensive effect.
Methods: In the acute experiments, methanol leaf extracts (MLE) of T. violacea (30–120 mg/kg), muscarine (0.16
-10 μg/kg), and atropine (0.02 - 20.48 mg/kg), and/or the vehicle (dimethylsulfoxide (DMSO) and normal saline (NS))
were respectively and randomly administered intravenously in a group of spontaneously hypertensive (SHR)
weighing 300 to 350 g and aged less than 5 months. Subsequently, T. violacea (60 mg/kg) or muscarine (2.5 μg/kg)
was infused into eight SHRs, 20 min after atropine (5.12 mg/kg) pre-treatment. In the chronic (21 days) experiments,
the SHRs were randomly divided into three groups, and given the vehicle (0.2 ml/day of DMSO and NS), T. violacea
(60 mg/kg/day) and captopril (10 mg/kg/day) respectively into the peritoneum, to investigate their effects on blood
pressure (BP), heart rate (HR), and plasma aldosterone levels. Systolic BP and HR were measured using tail-cuff
plethysmography during the intervention. BP and HR were measured via a pressure transducer connecting the
femoral artery and the Powerlab at the end of each intervention in the acute experiment; and on day 22 in the
chronic experiment.
Results: In the acute experiments, T. violacea, muscarine, and atropine significantly (p < 0.05) reduced BP
dose-dependently. T. violacea and muscarine produced dose-dependent decreases in HR, while the effect of
atropine on HR varied. After atropine pre-treatment, dose-dependent increases in BP and HR were observed with
T. violacea; while the BP and HR effects of muscarine were nullified. In the chronic experiments, the T. violaceatreated
and captropril-treated groups had signicantly lower levels of aldosterone in plasma when compared to
vehicle-treated group. Compared to the vehicle-treated group, significant reduction in BP was only seen in the
captopril-treated group; while no difference in HR was observed among the groups.
Conclusion: The results obtained in this study suggest that stimulation of the muscarinic receptors and a reduction
in plasma aldosterone levels contribute to the anti-hypertesive effect of T. violacea.IS
Two Dynamic Morphotypes of Sarcoma Cells, Asymmetric Stellate and Triangle with Leading Lamella, are Related to Malignancy
Abstract. A notion of the dynamic morphotype was developed as a conjunction between cell shape and migration. This enabled the investigation of the relationship between malignancy and patterns of dynamic morphology in neoplastic cells in vitro. Time-lapse cinemicroscopy was used to analyse the cell behaviour of three rat neoplastic cell lines (K2, T15, and A8), differing in metastatic potential, that were instrumental in revealing a coincidence between high migratory activity and appearance of the 3D structure of actin cables in high-malignant A8 cells A formal analysis of histopathological diagnosis of malignancy revealed the importance of attributes related to the apparent locomotory activity of neoplastic cells Material and Methods Cell populations Three neoplastic cell lines K2, T15 and A8 were used, all of them were from the family of spontaneous
- …
