418 research outputs found
Calorimetric Investigation of Copper Binding in the N-Terminal Region of the Prion Protein at Low Copper Loading: Evidence for an Entropically Favorable First Binding Event
Although
the Cu<sup>2+</sup>-binding sites of the prion protein have been well
studied when the protein is fully saturated by Cu<sup>2+</sup>, the
Cu<sup>2+</sup>-loading mechanism is just beginning to come into view.
Because the Cu<sup>2+</sup>-binding modes at low and intermediate
Cu<sup>2+</sup> occupancy necessarily represent the highest-affinity
binding modes, these are very likely populated under physiological
conditions, and it is thus essential to characterize them in order
to understand better the biological function of copper–prion
interactions. Besides binding-affinity data, almost no other thermodynamic
parameters (e.g., Δ<i>H</i> and Δ<i>S</i>) have been measured, thus leaving undetermined the enthalpic and
entropic factors that govern the free energy of Cu<sup>2+</sup> binding
to the prion protein. In this study, isothermal titration calorimetry
(ITC) was used to quantify the thermodynamic parameters (<i>K</i>, Δ<i>G</i>, Δ<i>H</i>, and <i>T</i>Δ<i>S</i>) of Cu<sup>2+</sup> binding to
a peptide, PrP(23–28, 57–98), that encompasses the majority
of the residues implicated in Cu<sup>2+</sup> binding by full-length
PrP. Use of the buffer <i>N</i>-(2-acetomido)-aminoethanesulfonic
acid (ACES), which is also a well-characterized Cu<sup>2+</sup> chelator,
allowed for the isolation of the two highest affinity binding events.
Circular dichroism spectroscopy was used to characterize the different
binding modes as a function of added Cu<sup>2+</sup>. The <i>K</i><sub>d</sub> values determined by ITC, 7 and 380 nM, are
well in line with those reported by others. The first binding event
benefits significantly from a positive entropy, whereas the second
binding event is enthalpically driven. The thermodynamic values associated
with Cu<sup>2+</sup> binding by the Aβ peptide, which is implicated
in Alzheimer’s disease, bear striking parallels to those found
here for the prion protein
Strangeness Enhancement in Cu+Cu and Au+Au Collisions at \sqrt{s_{NN}} = 200 GeV
We report new STAR measurements of mid-rapidity yields for the ,
, , , , ,
particles in Cu+Cu collisions at \sNN{200}, and mid-rapidity
yields for the , , particles in Au+Au at
\sNN{200}. We show that at a given number of participating nucleons, the
production of strange hadrons is higher in Cu+Cu collisions than in Au+Au
collisions at the same center-of-mass energy. We find that aspects of the
enhancement factors for all particles can be described by a parameterization
based on the fraction of participants that undergo multiple collisions
Inclusive charged hadron elliptic flow in Au + Au collisions at = 7.7 - 39 GeV
A systematic study is presented for centrality, transverse momentum ()
and pseudorapidity () dependence of the inclusive charged hadron elliptic
flow () at midrapidity() in Au+Au collisions at
= 7.7, 11.5, 19.6, 27 and 39 GeV. The results obtained with
different methods, including correlations with the event plane reconstructed in
a region separated by a large pseudorapidity gap and 4-particle cumulants
(), are presented in order to investigate non-flow correlations and
fluctuations. We observe that the difference between and
is smaller at the lower collision energies. Values of , scaled by
the initial coordinate space eccentricity, , as a function
of are larger in more central collisions, suggesting stronger collective
flow develops in more central collisions, similar to the results at higher
collision energies. These results are compared to measurements at higher
energies at the Relativistic Heavy Ion Collider ( = 62.4 and 200
GeV) and at the Large Hadron Collider (Pb + Pb collisions at =
2.76 TeV). The values for fixed rise with increasing collision
energy within the range studied (). A comparison to
viscous hydrodynamic simulations is made to potentially help understand the
energy dependence of . We also compare the results to UrQMD
and AMPT transport model calculations, and physics implications on the
dominance of partonic versus hadronic phases in the system created at Beam
Energy Scan (BES) energies are discussed.Comment: 20 pages, 12 figures. Version accepted by PR
Studies of di-jet survival and surface emission bias in Au+Au collisions via angular correlations with respect to back-to-back leading hadrons
We report first results from an analysis based on a new multi-hadron
correlation technique, exploring jet-medium interactions and di-jet surface
emission bias at RHIC. Pairs of back-to-back high transverse momentum hadrons
are used for triggers to study associated hadron distributions. In contrast
with two- and three-particle correlations with a single trigger with similar
kinematic selections, the associated hadron distribution of both trigger sides
reveals no modification in either relative pseudo-rapidity or relative
azimuthal angle from d+Au to central Au+Au collisions. We determine associated
hadron yields and spectra as well as production rates for such correlated
back-to-back triggers to gain additional insights on medium properties.Comment: By the STAR Collaboration. 6 pages, 2 figure
Observation of the antimatter helium-4 nucleus
High-energy nuclear collisions create an energy density similar to that of
the universe microseconds after the Big Bang, and in both cases, matter and
antimatter are formed with comparable abundance. However, the relatively
short-lived expansion in nuclear collisions allows antimatter to decouple
quickly from matter, and avoid annihilation. Thus, a high energy accelerator of
heavy nuclei is an efficient means of producing and studying antimatter. The
antimatter helium-4 nucleus (), also known as the anti-{\alpha}
(), consists of two antiprotons and two antineutrons (baryon
number B=-4). It has not been observed previously, although the {\alpha}
particle was identified a century ago by Rutherford and is present in cosmic
radiation at the 10% level. Antimatter nuclei with B < -1 have been observed
only as rare products of interactions at particle accelerators, where the rate
of antinucleus production in high-energy collisions decreases by about 1000
with each additional antinucleon. We present the observation of the antimatter
helium-4 nucleus, the heaviest observed antinucleus. In total 18
counts were detected at the STAR experiment at RHIC in 10 recorded Au+Au
collisions at center-of-mass energies of 200 GeV and 62 GeV per nucleon-nucleon
pair. The yield is consistent with expectations from thermodynamic and
coalescent nucleosynthesis models, which has implications beyond nuclear
physics.Comment: 19 pages, 4 figures. Submitted to Nature. Under media embarg
Inclusive pi^0, eta, and direct photon production at high transverse momentum in p+p and d+Au collisions at sqrt(s_NN) = 200 GeV
We report a measurement of high-p_T inclusive pi^0, eta, and direct photon
production in p+p and d+Au collisions at sqrt(s_NN) = 200 GeV at midrapidity (0
gamma gamma were detected in the
Barrel Electromagnetic Calorimeter of the STAR experiment at the Relativistic
Heavy Ion Collider. The eta -> gamma gamma decay was also observed and
constituted the first eta measurement by STAR. The first direct photon cross
section measurement by STAR is also presented, the signal was extracted
statistically by subtracting the pi^0, eta, and omega(782) decay background
from the inclusive photon distribution observed in the calorimeter. The
analysis is described in detail, and the results are found to be in good
agreement with earlier measurements and with next-to-leading order perturbative
QCD calculations.Comment: 28 pages, 30 figures, 6 tables, the updated version that was accepted
by Phys. Rev.
Measurements of and Production in + Collisions at = 200 GeV
We report measurements of charmed-hadron (, ) production cross
sections at mid-rapidity in + collisions at a center-of-mass energy of
200 GeV by the STAR experiment. Charmed hadrons were reconstructed via the
hadronic decays , and their charge conjugates,
covering the range of 0.62.0 GeV/ and 2.06.0 GeV/ for
and , respectively. From this analysis, the charm-pair production cross
section at mid-rapidity is = 170 45
(stat.) (sys.) b. The extracted charm-pair cross section is
compared to perturbative QCD calculations. The transverse momentum differential
cross section is found to be consistent with the upper bound of a Fixed-Order
Next-to-Leading Logarithm calculation.Comment: 15 pages, 16 figures. Revised version submitted to Phys. Rev.
An Experimental Exploration of the QCD Phase Diagram: The Search for the Critical Point and the Onset of De-confinement
The QCD phase diagram lies at the heart of what the RHIC Physics Program is
all about. While RHIC has been operating very successfully at or close to its
maximum energy for almost a decade, it has become clear that this collider can
also be operated at lower energies down to 5 GeV without extensive upgrades. An
exploration of the full region of beam energies available at the RHIC facility
is imperative. The STAR detector, due to its large uniform acceptance and
excellent particle identification capabilities, is uniquely positioned to carry
out this program in depth and detail. The first exploratory beam energy scan
(BES) run at RHIC took place in 2010 (Run 10), since several STAR upgrades,
most importantly a full barrel Time of Flight detector, are now completed which
add new capabilities important for the interesting physics at BES energies. In
this document we discuss current proposed measurements, with estimations of the
accuracy of the measurements given an assumed event count at each beam energy.Comment: 59 pages, 78 figure
Observation of charge-dependent azimuthal correlations and possible local strong parity violation in heavy ion collisions
Parity-odd domains, corresponding to non-trivial topological solutions of the
QCD vacuum, might be created during relativistic heavy-ion collisions. These
domains are predicted to lead to charge separation of quarks along the orbital
momentum of the system created in non-central collisions. To study this effect,
we investigate a three particle mixed harmonics azimuthal correlator which is a
\P-even observable, but directly sensitive to the charge separation effect. We
report measurements of this observable using the STAR detector in Au+Au and
Cu+Cu collisions at =200 and 62~GeV. The results are presented
as a function of collision centrality, particle separation in rapidity, and
particle transverse momentum. A signal consistent with several of the
theoretical expectations is detected in all four data sets. We compare our
results to the predictions of existing event generators, and discuss in detail
possible contributions from other effects that are not related to parity
violation.Comment: 17 pages, 14 figures, as accepted for publication in Physical Review
C
- …
