1,055 research outputs found
Learning with a Drifting Target Concept
We study the problem of learning in the presence of a drifting target
concept. Specifically, we provide bounds on the error rate at a given time,
given a learner with access to a history of independent samples labeled
according to a target concept that can change on each round. One of our main
contributions is a refinement of the best previous results for polynomial-time
algorithms for the space of linear separators under a uniform distribution. We
also provide general results for an algorithm capable of adapting to a variable
rate of drift of the target concept. Some of the results also describe an
active learning variant of this setting, and provide bounds on the number of
queries for the labels of points in the sequence sufficient to obtain the
stated bounds on the error rates
Tax evasion and exchange equity: a reference-dependent approach
The standard portfolio model of tax evasion with a public good produces the perverse conclusion that when taxpayers perceive the public good to be under-/overprovided, an increase in the tax rate increases/decreases evasion. The author treats taxpayers as thinking in terms of gains and losses relative to an endogenous reference level, which reflects perceived exchange equity between the value of taxes paid and the value of public goods supplied. With these alternative behavioral assumptions, the author overturns the aforementioned result in a direction consistent with the empirical evidence. The author also finds a role for relative income in determining individual responses to a change in the marginal rate of tax
Recommended from our members
A global atmospheric electricity monitoring network for climate and geophysical research
The Global atmospheric Electric Circuit (GEC) is a fundamental coupling network of the climate system connecting electrically disturbed weather regions with fair weather regions across the planet. The GEC sustains the fair weather electric field (or potential gradient, PG) which is present globally and can be measured routinely at the surface using durable instrumentation such as modern electric field mills, which are now widely deployed internationally. In contrast to lightning or magnetic fields, fair weather PG cannot be measured remotely. Despite the existence of many PG datasets (both contemporary and historical), few attempts have been made to coordinate and integrate these fragmented surface measurements within a global framework. Such a synthesis is important elvinin order to fully study major influences on the GEC such as climate variations and space weather effects, as well as more local atmospheric electrical processes such as cloud electrification, lightning initiation, and dust and aerosol charging.
The GloCAEM (Global Coordination of Atmospheric Electricity Measurements) project has brought together experts in atmospheric electricity to make the first steps towards an effective global network for atmospheric electricity monitoring, which will provide data in near real time. Data from all sites are available in identically-formatted files, at both one second and one minute temporal resolution, along with meteorological data (wherever available) for ease of interpretation of electrical measurements. This work describes the details of the GloCAEM database and presents what is likely to be the largest single analysis of PG data performed from multiple datasets at geographically distinct locations. Analysis of the diurnal variation in PG from all 17 GloCAEM sites demonstrates that the majority of sites show two daily maxima, characteristic of local influences on the PG, such as the sunrise effect. Data analysis methods to minimise such effects are presented and recommendations provided on the most suitable GloCAEM sites for the study of various scientific phenomena. The use of the dataset for a further understanding of the GEC is also demonstrated, in particular for more detailed characterization of day-to-day global circuit variability. Such coordinated effort enables deeper insight into PG phenomenology which goes beyond single-location PG measurements, providing a simple measurement of global thunderstorm variability on a day-to-day timescale. The creation of the GloCAEM database is likely to enable much more effective study of atmospheric electricity variables than has ever been possible before, which will improve our understanding of the role of atmospheric electricity in the complex processes underlying weather and climate
Experimentally revealing anomalously large dipoles in the dielectric of a quantum circuit
Quantum two-level systems (TLSs) intrinsic to glasses induce decoherence in many modern quantum devices, such as superconducting qubits. Although the low-temperature physics of these TLSs is usually well-explained by a phenomenological standard tunneling model of independent TLSs, the nature of these TLSs, as well as their behavior out of equilibrium and at high energies above 1 K, remain inconclusive. Here we measure the non-equilibrium dielectric loss of TLSs in amorphous silicon using a superconducting resonator, where energies of TLSs are varied in time using a swept electric field. Our results show the existence of two distinct ensembles of TLSs, interacting weakly and strongly with phonons, where the latter also possesses anomalously large electric dipole moment. These results may shed new light on the low temperature characteristics of amorphous solids, and hold implications to experiments and applications in quantum devices using time-varying electric fields
OTX2 Duplication Is Implicated in Hemifacial Microsomia
Hemifacial microsomia (HFM) is the second most common facial anomaly after cleft lip and palate. The phenotype is highly variable and most cases are sporadic. We investigated the disorder in a large pedigree with five affected individuals spanning eight meioses. Whole-exome sequencing results indicated the absence of a pathogenic coding point mutation. A genome-wide survey of segmental variations identified a 1.3 Mb duplication of chromosome 14q22.3 in all affected individuals that was absent in more than 1000 chromosomes of ethnically matched controls. The duplication was absent in seven additional sporadic HFM cases, which is consistent with the known heterogeneity of the disorder. To find the critical gene in the duplicated region, we analyzed signatures of human craniofacial disease networks, mouse expression data, and predictions of dosage sensitivity. All of these approaches implicated OTX2 as the most likely causal gene. Moreover, OTX2 is a known oncogenic driver in medulloblastoma, a condition that was diagnosed in the proband during the course of the study. Our findings suggest a role for OTX2 dosage sensitivity in human craniofacial development and raise the possibility of a shared etiology between a subtype of hemifacial microsomia and medulloblastoma
Properties of Classical and Quantum Jensen-Shannon Divergence
Jensen-Shannon divergence (JD) is a symmetrized and smoothed version of the
most important divergence measure of information theory, Kullback divergence.
As opposed to Kullback divergence it determines in a very direct way a metric;
indeed, it is the square of a metric. We consider a family of divergence
measures (JD_alpha for alpha>0), the Jensen divergences of order alpha, which
generalize JD as JD_1=JD. Using a result of Schoenberg, we prove that JD_alpha
is the square of a metric for alpha lies in the interval (0,2], and that the
resulting metric space of probability distributions can be isometrically
embedded in a real Hilbert space. Quantum Jensen-Shannon divergence (QJD) is a
symmetrized and smoothed version of quantum relative entropy and can be
extended to a family of quantum Jensen divergences of order alpha (QJD_alpha).
We strengthen results by Lamberti et al. by proving that for qubits and pure
states, QJD_alpha^1/2 is a metric space which can be isometrically embedded in
a real Hilbert space when alpha lies in the interval (0,2]. In analogy with
Burbea and Rao's generalization of JD, we also define general QJD by
associating a Jensen-type quantity to any weighted family of states.
Appropriate interpretations of quantities introduced are discussed and bounds
are derived in terms of the total variation and trace distance.Comment: 13 pages, LaTeX, expanded contents, added references and corrected
typo
Not Just a Theory--The Utility of Mathematical Models in Evolutionary Biology
Progress in science often begins with verbal hypotheses meant to explain why certain biological phenomena exist. An important purpose of mathematical models in evolutionary research, as in many other fields, is to act as “proof-of-concept” tests of the logic in verbal explanations, paralleling the way in which empirical data are used to test hypotheses. Because not all subfields of biology use mathematics for this purpose, misunderstandings of the function of proof-of-concept modeling are common. In the hope of facilitating communication, we discuss the role of proof-of-concept modeling in evolutionary biology
- …