239 research outputs found
Introduction: Double-crested Cormorants of the Great Lakes – St. Lawrence River Basin: Recent Studies, Movements and Responses to Management Actions
This paper introduces the second Special Publication of the Waterbird Society to address the biology and management of the Double-crested Cormorant (Phalacrocorax auritius) in North America. Since the late 1960s and early 1970s, when the species was at very low population levels, the Double-crested Cormorant has rebounded to its greatest population level in over 100 years. Such a significant increase has resulted in changes in community structure, and new stressors, in many aquatic ecosystems. Both Special Publications (1995 and 2013) have been focused on the biology and management of the species. The first volume dealt mainly with population growth and the resulting, immediate management issues. In the current volume, studies address the longer term situation, the implementation of two U.S. depredation orders and new research directions identified in the first Special Publication and in subsequent smaller cormorant symposia. Seventeen papers which comprise this volume are presented under six headings: introduction, impacts to natural resources, population dynamics, evaluation of control efforts, assessing fish consumption and bioenergetics, migration ecology and local and seasonal movements, and summary overview and future information needs. A second Special Publication on Double-crested Cormorants gives us an opportunity to assess how well cormorant biologists have addressed and answered questions we posed to ourselves 15 years earlier; it also provides us with a vision for the next 18 years
Evaluating the Effectiveness of the 30-Second Chair Stand Test as an ED Screening Tool for Elderly Fall Risk Assessment.
Does Sex-Selective Predation Stabilize or Destabilize Predator-Prey Dynamics?
Background: Little is known about the impact of prey sexual dimorphism on predator-prey dynamics and the impact of sexselective
harvesting and trophy hunting on long-term stability of exploited populations.
Methodology and Principal Findings: We review the quantitative evidence for sex-selective predation and study its longterm
consequences using several simple predator-prey models. These models can be also interpreted in terms of feedback
between harvesting effort and population size of the harvested species under open-access exploitation. Among the 81
predator-prey pairs found in the literature, male bias in predation is 2.3 times as common as female bias. We show that
long-term effects of sex-selective predation depend on the interplay of predation bias and prey mating system. Predation
on the ‘less limiting’ prey sex can yield a stable predator-prey equilibrium, while predation on the other sex usually
destabilizes the dynamics and promotes population collapses. For prey mating systems that we consider, males are less
limiting except for polyandry and polyandrogyny, and male-biased predation alone on such prey can stabilize otherwise
unstable dynamics. On the contrary, our results suggest that female-biased predation on polygynous, polygynandrous or
monogamous prey requires other stabilizing mechanisms to persist.
Conclusions and Significance: Our modelling results suggest that the observed skew towards male-biased predation might
reflect, in addition to sexual selection, the evolutionary history of predator-prey interactions. More focus on these
phenomena can yield additional and interesting insights as to which mechanisms maintain the persistence of predator-prey
pairs over ecological and evolutionary timescales. Our results can also have implications for long-term sustainability of
harvesting and trophy hunting of sexually dimorphic species
Modelling the impact of toxic and disturbance stress on white-tailed eagle (Haliaeetus albicilla) populations
Several studies have related breeding success and survival of sea eagles to toxic or non-toxic stress separately. In the present investigation, we analysed single and combined impacts of both toxic and disturbance stress on populations of white-tailed eagle (Haliaeetus albicilla), using an analytical single-species model. Chemical and eco(toxico)logical data reported from laboratory and field studies were used to parameterise and validate the model. The model was applied to assess the impact of ∑PCB, DDE and disturbance stress on the white-tailed eagle population in The Netherlands. Disturbance stress was incorporated through a 1.6% reduction in survival and a 10–50% reduction in reproduction. ∑PCB contamination from 1950 up to 1987 was found to be too high to allow the return of white-tailed eagle as a breeding species in that period. ∑PCB and population trends simulated for 2006–2050 suggest that future population growth is still reduced. Disturbance stress resulted in a reduced population development. The combination of both toxic and disturbance stress varied from a slower population development to a catastrophical reduction in population size, where the main cause was attributed to the reduction in reproduction of 50%. Application of the model was restricted by the current lack of quantitative dose–response relationships between non-toxic stress and survival and reproduction. Nevertheless, the model provides a first step towards integrating and quantifying the impacts of multiple stressors on white-tailed eagle populations
Stable Isotope Biogeochemistry of Seabird Guano Fertilization: Results from Growth Chamber Studies with Maize (Zea Mays)
Stable isotope analysis is being utilized with increasing regularity to examine a wide range of issues (diet, habitat use, migration) in ecology, geology, archaeology, and related disciplines. A crucial component to these studies is a thorough understanding of the range and causes of baseline isotopic variation, which is relatively poorly understood for nitrogen (δ(15)N). Animal excrement is known to impact plant δ(15)N values, but the effects of seabird guano have not been systematically studied from an agricultural or horticultural standpoint.This paper presents isotopic (δ(13)C and δ(15)N) and vital data for maize (Zea mays) fertilized with Peruvian seabird guano under controlled conditions. The level of (15)N enrichment in fertilized plants is very large, with δ(15)N values ranging between 25.5 and 44.7‰ depending on the tissue and amount of fertilizer applied; comparatively, control plant δ(15)N values ranged between -0.3 and 5.7‰. Intraplant and temporal variability in δ(15)N values were large, particularly for the guano-fertilized plants, which can be attributed to changes in the availability of guano-derived N over time, and the reliance of stored vs. absorbed N. Plant δ(13)C values were not significantly impacted by guano fertilization. High concentrations of seabird guano inhibited maize germination and maize growth. Moreover, high levels of seabird guano greatly impacted the N metabolism of the plants, resulting in significantly higher tissue N content, particularly in the stalk.The results presented in this study demonstrate the very large impact of seabird guano on maize δ(15)N values. The use of seabird guano as a fertilizer can thus be traced using stable isotope analysis in food chemistry applications (certification of organic inputs). Furthermore, the fertilization of maize with seabird guano creates an isotopic signature very similar to a high-trophic level marine resource, which must be considered when interpreting isotopic data from archaeological material
Host plant use by the Heath fritillary butterfly, Melitaea athalia: plant habitat, species and chemistry
Probable hybrids of Cinnamon X Blue-winged Teal from southern Alberta
Volume: 93Start Page: 316End Page: 31
- …
