12,001 research outputs found

    Resistive Magnetohydrodynamic Equilibria in a Torus

    Full text link
    It was recently demonstrated that static, resistive, magnetohydrodynamic equilibria, in the presence of spatially-uniform electrical conductivity, do not exist in a torus under a standard set of assumed symmetries and boundary conditions. The difficulty, which goes away in the ``periodic straight cylinder approximation,'' is associated with the necessarily non-vanishing character of the curl of the Lorentz force, j x B. Here, we ask if there exists a spatial profile of electrical conductivity that permits the existence of zero-flow, axisymmetric r esistive equilibria in a torus, and answer the question in the affirmative. However, the physical properties of the conductivity profile are unusual (the conductivity cannot be constant on a magnetic surface, for example) and whether such equilibria are to be considered physically possible remains an open question.Comment: 17 pages, 4 figure

    Dynamic alignment and selective decay in MHD

    Get PDF
    Under some circumstances, incompressible magnetohydrodynamic turbulence will evolve toward a state in which the velocity fields and magnetic fields are aligned or anti-aligned. We propose a mechanism for this effect and illustrate with numerical computations. Under some other circumstances, the energy appears to decay selectively toward a minimum energy state in which the kinetic energy has disappeared. It has not been possible so far to identify a boundary in the phase space which divides the two regimes

    Design and analysis of the radiator structure for space power systems

    Get PDF
    The design, analysis, fabrication, and development of the 5-kWe radiator structure are shown. Thermal performance, meteoroid protection, structural capability during launch, development testing and space operation, material evaluation, and the configuration selection are described. The fin-tube development program depends on the relative values of the thermal coefficients of expansion. The initial selection of aluminum fins and Type 316 stainless-steel tubes was based on previous experience; however, the large differential in their expansion rates showed that an alternate, more compatible, combination was needed. Copper, stainless-steel-clad copper, boron-impregnated aluminum, and an independent radiator with a titanium structure were all considered as alternate materials. The final selection was Lockalloy fins with Type 304 stainless-steel D tubes

    Anisotropy in MHD turbulence due to a mean magnetic field

    Get PDF
    The development of anisotropy in an initially isotropic spectrum is studied numerically for two-dimensional magnetohydrodynamic turbulence. The anisotropy develops due to the combined effects of an externally imposed dc magnetic field and viscous and resistive dissipation at high wave numbers. The effect is most pronounced at high mechanical and magnetic Reynolds numbers. The anisotropy is greater at the higher wave numbers

    The turbulent generation of outward traveling Alfvenic fluctuations in the solar wind

    Get PDF
    From an analysis of the incompressible MHD equations, it is concluded that the frequent observation of outward propagating Alfvenic fluctuations in the solar wind can arise from early stages of in situ turbulent evolution, and need not reflect coronal processes

    Toroidal Vortices in Resistive Magnetohydrodynamic Equilibria

    Full text link
    Resistive steady states in toroidal magnetohydrodynamics (MHD), where Ohm's law must be taken into account, differ considerably from ideal ones. Only for special (and probably unphysical) resistivity profiles can the Lorentz force, in the static force-balance equation, be expressed as the gradient of a scalar and thus cancel the gradient of a scalar pressure. In general, the Lorentz force has a curl directed so as to generate toroidal vorticity. Here, we calculate, for a collisional, highly viscous magnetofluid, the flows that are required for an axisymmetric toroidal steady state, assuming uniform scalar resistivity and viscosity. The flows originate from paired toroidal vortices (in what might be called a ``double smoke ring'' configuration), and are thought likely to be ubiquitous in the interior of toroidally driven magnetofluids of this type. The existence of such vortices is conjectured to characterize magnetofluids beyond the high-viscosity limit in which they are readily calculable.Comment: 17 pages, 4 figure

    Ocean services user needs assessment. Volume 1: Survey results, conclusions and recommendations

    Get PDF
    An interpretation of environmental information needs of marine users, derived from a direct contact survey of eight important sectors of the marine user community is presented. Findings of the survey and results and recommendations are reported. The findings consist of specific and quantized measurement and derived product needs for each sector and comparisons of these needs with current and planned NOAA data and services. The following supportive and reference material are examined: direct contact interviews with industry members, analyses of current NOAA data gathering and derived product capabilities, evaluations of new and emerging domestic and foreign satellite data gathering capabilities, and a special commercial fishing survey conducted by the Jet Propulsion Laboratory (JPL)

    Chow's theorem and universal holonomic quantum computation

    Full text link
    A theorem from control theory relating the Lie algebra generated by vector fields on a manifold to the controllability of the dynamical system is shown to apply to Holonomic Quantum Computation. Conditions for deriving the holonomy algebra are presented by taking covariant derivatives of the curvature associated to a non-Abelian gauge connection. When applied to the Optical Holonomic Computer, these conditions determine that the holonomy group of the two-qubit interaction model contains SU(2)×SU(2)SU(2) \times SU(2). In particular, a universal two-qubit logic gate is attainable for this model.Comment: 13 page

    Velocity field distributions due to ideal line vortices

    Get PDF
    We evaluate numerically the velocity field distributions produced by a bounded, two-dimensional fluid model consisting of a collection of parallel ideal line vortices. We sample at many spatial points inside a rigid circular boundary. We focus on ``nearest neighbor'' contributions that result from vortices that fall (randomly) very close to the spatial points where the velocity is being sampled. We confirm that these events lead to a non-Gaussian high-velocity ``tail'' on an otherwise Gaussian distribution function for the Eulerian velocity field. We also investigate the behavior of distributions that do not have equilibrium mean-field probability distributions that are uniform inside the circle, but instead correspond to both higher and lower mean-field energies than those associated with the uniform vorticity distribution. We find substantial differences between these and the uniform case.Comment: 21 pages, 9 figures. To be published in Physical Review E (http://pre.aps.org/) in May 200
    corecore