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Abstract

From an analysis of magnetohydrodymic turbulent processes, we conclude that

the frequent observation of outward propagating A fvenic fluctuations in ttie

solar wind can arise from early stages of in situ turbulent evolution, and'

need not reflect corcnal processes as has hitherto been assumed.
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Spacecraft observations have indicated that in the interplanetary medium a

high degree of correlation frequently exists between the fluctuating magnetic

field 5 and the fluctuating plasma fluid velocity v. These are "Alfvenie

fluctuations" with rms fluctuation levels comparable to the mean magnetic

field and have nearly aligned v and b. l ' x Finite amplitude Alfvenie fluctua-

tions (with v 2 A, b measured in units of an Alfven speed) are exact

solutions to the equations of ideal incompressible magnetohydrodynamics (MHD)

turbulence' and are candidates for preferred final states of MHD".

Though the evolution of MHD turbulence is complex, it can proceed toward

final states which can be simply described. It has been recently argued' that

MHD turbulence can increase the degree of alignment at large times and that

this process produces interplanetary Alfvenie fluctuations. Evidence in

support of "dynamic alignment" has accumulated in the form of closure

calculations $ and from numerical solutions of the MHD equations."' Under

other conditions, evidence has been presented 111 '" that MHD turbulence will

instead evolve toward a minimum-energy state, with a•decaying ratio of kinetic

to magnetic energy. It is not entirely clear whai, boundaries separate these

two regimes and this remains an unresolved issue in MHD turbulence theory.'

Here we present further evidence for dynamic alignment of v and b in two-

dimensional MHD turbulence from which we see that interplanetary fluctuations

need not represent time asymptotic states. Rather, we argue that inter-

planetary Alfvenie fluctuations are generated in situ in the early stage of

dynamic alignment. Our model not only provides an explJjnation for inertial

range alignment of v and . in tiie solar wind, but also accounts for the fact

that the sign of this correlation (relative to the direction of the mean

magnetic field) corresponds to the observed "direction of propagation": away	 I

from the sun s . We find support for the viewpoint that MHD fluctuations in the
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solar wind resembli?'turbulence " 112 arising from local stirring of the medium.

There are at least two important questions involved in the generation of

Alfv6nic states: First, does dynamic alignment occur and why? Second, if a

high degree of alignment initially exists, does it inhibit further development

of turbulent processes, such as spectral transfer? (Perfectly aligned states

exhibit no spectral transfer, which has been used to suggest s ' that inter-

planetary fluctuations are not, properly speaking, evolving turbulence.)

We have investigated these questions numerically using an incompressible

MHD spectral method code " s4. The equations solved are, in a familiar

dimensionless form:

av/at + v • vv = -vp + b • vb + uv=v

ab/at + v • vb
	

b.4v + µ7 = b.	 (2)

p is the mechanical plus magnetic pressure and o •v = 0 0 •b. The magr^tie

and mechanical Reynolds numbers are 1/µ and 1/u, respectively. Periodic

boundary conditions in the x-y plane are assumed and a/az = 0. The Fourier

coefficients v(2, -t) and W ,t) are advanced from initial ( t-0) values, for

each wave number k' by integrating the truncated Fourier transformed versions

of (1) and (2). Time is scaled to the Alfvdn transit time of unit distance

corresponding to the initial magnetic field.

The degree -of„alignment is measured by the ratio of two ideal "rugged”

invariants, the cross helicity, He = 04>/2 anO the energy E = <v 2 + b'>/2

(brackets denote a spatial average). Extremal V^^lues of H c!E W /2) indicate

perfect alignment.

Four simulations are discussed hiire,_ 43- ignated A, B, C and D. Runs A, B,

r"
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and C were obtained with a 128028 code with Reynolds numbers of 400. Includ-

ed wavevectors have integer components ranging from 1 to 64 and their negative

counterparts. At ta0, all non -vanishing Fourier amplitudes were confined to a

circular annulus 9 < k s < 25 and had a fixed kinetic energy, twice as much	
4

magnetic energy, and phases chosen as follows: The phase of b(;,0) was chosen

randomly and a phase angle 8 was chosen between v ( ;,0) and b(k,0). This

specifies the modal cross helicity, H c (k) = Re v*(k)•b(k). 	 Run A is

initially highly aligned with arccos ( 0.95) = e and He/E = 0.45. Run B is only

moderately aligned with arcc03( . 3) = e and He/E = 0.14. Run C has the phases

of 9 and v both randomly chosen so that H e = 0. Initially run D; (64x64 grid;

Reynolds numbers 400) consisted of the homogeneous turbulence used in A, B,

and C superimposed on a large scale shear flow and a correlated large scale b.

At t=0, He/E_ -0.4. Time steps were either 1/256 or 1/512. Other runs, not

described here, displayed similar results.

Direction averaged modal energy spectra for runs A and C are shown in Fig.
	 i

1, both at t_0.19. Initial energy spectra in both runs were identical.

Spectral transfer out of the initially excited annulus is not noticeably

inhibited by the high degree of alignment in run A relative to what it is in

run C. The nearly power-law inertial range in run A occurs at a lower level

than for the He N 0 case C, indicating that initial alignment can at most slow	 i

transfer, but cannot prevent turbulence from occurring.

Fig. 2 illustrates the temporal development of dynamic alignment. The

ratio IHa/El for runs A and B increases nearly monotonically, in agreement

with previously reported re3ult3.4'7'6
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A physical explanation for dynamic alignment is suggested by rewriting (1)

and (2) in the Elsas er variables ± o v ± b. We focus on the low-k region, 	
r.^^

neglecting dissipative terms and combine egs. (1) and (2) into az
±
/at =
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i+•yzt - vp. p is determined by using v •z± 0 to yield a Poisson equation.

COnsider now the case 12+ 1 >> 11-1. Note that z+ is nearly indepeofdent of

time. mince pp is of order z-•vz+ , the fractional rate Jaz
+
/ atl /110+ 1 goes to

zero as z- -o 0. However, the fractional rate 13z 	 z-) remains of 0(1) as

z + 0. The spectrum of z+ is effectively frozen, but that of z continues

co evolve and to squire higher wave number components. In fact, at every

time step the z- spectrum will spread to all additive combinations of wave

numbers that comprised those present in 10+ (0) and z- at the previous time

step. The transfer of the z- spectrum to higher wave numbers will continue at

a fractional rate that remains finite even as z- becomes small. , Eventually,

z will be dissipated as it reaches the higher k values, (.,chancing the

inequality 11
+
1 » Iz I. We believe this mechanism, by wh,ch the majority

species cannibalizes the minority one by sending it to high wave numbers to be

dissipated, is the essential mechanism involved in dynamic alignment.

The simulations reflect this qualitative behavior: Fig. 3 shows the
ti

normali,ze,d direction-averaged cross helicity spectrum 2H c (k)/E(k) vs. k at an

early stage of runs A, B and D. The transfer of excitation to k's higher than

those initially present consists almost entirely of cross helicity contribu-

tions of opposite sign tr) those in the energy-containing low-k part of the

spectrum. For runs A and B, z- is transferred to toward the dissipation

range, as is z+ for run D.

This effect apparently dominates; for times of the order of an Alfven

transit time or an 't eddy turnover time." Subsequently, the simulations

indicate that the normalized cross helicity spectra undergo a further

systematic evolution as illustrated for run A in Fig,, 4. The inertial range

gradually loses its one-signed character as the majority species slowly moves

out of the low k's. For highly correlated runs (such as A), minority species

}



domination of the highest computed Ws persists for very long times (beyond

11f=20, not shown).

In runs with less aligned initial correlation such as B, behavior similar

to that of in Fig. 4 is observed, but with less pront)unced minority sP^cies

domination of high k's ( not shown). The high k part of the spectrum can
become more or less equally populated with z+ and z- . Because z+ and i- have

equal dissipation rates, dyrlamic alignment continues, leaving an excess of

majority species in the energy containing scales. In no case have we seen

broad -band domination of the inertial range by the majority species before
very long times D 20). However, the early time appearance of an inertial
range populated by the minority species and the very slow spread of the

majority species from energy containing to hiar Jr k are features common to all

our simulations.

These results suggest a mod-1 for the turbulent production of interplaneta-

ry Alfvenic fluctuations. Consider a volume of solar wind plasma containing a

mean magnetic field lying entirely in a single magnetic sector. is The large

scale velocity field is radially outward, so that the sign of the radial

component of the mean magnetic field determines the sign of the large scale

contribution to He = Ha ( large). Ha (large) is generally nonzero in the

vicinity of high speed streams (where Alfvenic fluctuations are usually

observed) even in the reference frame moving with the mean solar wind

velocity. Now assume that inertial range fluctuations are due, at least in

part, to nonlinear couplings which drain energy in the large scale fields and

pump the small scale fluctuations. If the energy transfer produces dynamic

alignment consistent with the results described above, then at "early times"

the inertial range of interplanetary fluctuations would contain a sign c:.

cross helicity opposite to that present in the large scale energy containing

c

r

f

y
1
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structurea; i.e., the cross helicity of the inertial range fluctuations, say

Hc (inertial), would have a sign corresponding to outward propagation.

This model is consistent with spectral analysis of highly Alfvenic periods

which often shows that long wavelength fluctuations have Hc (k) opposite in

sign to the inertial range fluctuations." These "inward ,propagating" long

wavelength waves would be the transition in the spectrum between the large

scale energy containing structures which are driving the turbulence and the

inertial range fluctuations which are being driven.

Durir,ig the later stage, as the turbulence gets "older", the inertial range

may become equally populated with both 
x+ and z r;s envisioned i,n Ref. 5. One

might anticipate that interplanetary plasma which has spent a longer time

being "stirred" is less 'likely to be Alfvenic. One reported observation; at 5

AU behind a high speed stream is possible evidence of this.. In that spectrum,

the cross helicity in the inertial range oscillated in sign and was generally

not close to its maximal values (Ref. 11, Fig. 11), indicating weak inward and

outward propagating Alfvenic fluctuations.

Another possibility, $ is that dynamic alignment enhances a seed correla-

tion of v and t so that by 1 AU highly Alfv gnic fluctuations would be seen.

In contrast to our model, the majority z-field would represent the Alfvenic

fluctuations. One difficulty with this model is the limited time available

for turbulent evolution as the solar wind flows between the sun and 1 AU. A

substantial fractional increase of the 'v—'b correlation requires tens of Alfven

transit times (cf. Fig. 2). For nominal interplanetary conditions at 1 AU,

the energy containing scale is approximately 10 12 cm ' 'L6 and the Alfven

speed is approximately one tenth the flow speed of about 4 x 10 7 cm/s. Thus

only a few Alfven transit times elapse for each AU of mean plasma motion and

it is unlikely that there is time for a substantial degree of dynamic

I

A

i
1 g!
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alignment to occur by 1 AU. Furthermore, an additional mechanism would be

required to account for the outward traveling sense of the v-b correlation.

Our model naturally generates outward propagating fluctuations. The early

stages of MHD turbulence produce an inertial range with fluctuating velocity-

magnetic field correlation opposite in sign to the correlation of the large

scale velocity and magnetic fields which di--ive the turbulence. This can

account for the widespread occurrence of Alfvenic fluctuations in the solar

wind. The analytical model presented is essentially unchanged by the addition

,a a mean magnetic field and is applicable to any dimensionality. Simulations

in two dimensions have shown the mechanism to act starting from a variety of

initial conditions.
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Figure Captions

Figure 1. Modal total energy spectra at t s 0.19 for runs C (uncorrelated

initial fields) and A (highly correlated initial fialdt-4. The inital

spectra were identical except for-the values of H c (k). Spectral transfer

occurs in both cases.

Figure 2. The ratio He/E vs. time for runs A and B, showing the near monotone

increase in the degree of alignment of v and 5 due to turbulence.

Figure 3. Normalized cross helicity spectrum for runs A and B at t _ 0.19 and

D at t a 0.4. Data in Figs. 3 and 4 were smoothed by a 9 point moving

average before plotting. In all three cases, the transfer of cross

helicity to high k is almost exclusively opposite in sign to that of the

low k t_0 state.

Figure 4. (a) Run A at t = 0.98 when transfer of the initially dominant

z+-mode into the inertial range begins resulting in a H. ( k) mixed in sign.

(b) Run A in a later stage (t m T.$) where the z+ ' field dominates the

cross helicity spectrum except at the highest k1s.
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