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ABSTRACT

The development of anisotropy in an initially isotropic spectrum

is studied numerically for two-dimensional magnetohydrodynamic turbulen-e.

The anisotropy develops due to the combined effects of an externally imposed

do magnetic field and viscous and resistive dissipation at high wave numbers.

The effect is most pronounced at high mechanical and magnetic Reynolds numbers.

The anisotropy is greater at the higher wave numbers.

V.
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1. Introduction

In the last several years, a systematic theory of magnetohydrodynamic

(MHD) turbulence has developed, but it has dealt largely with the case in which

no mean do magnetic field is present. The presence of a mean de magnetic field

renders MHD turbulence inherently anisotropic, and one can no longer take
s

advantage of the contraction of the statistical description that the isotropy

r provides. Here, we report a "beginning on the problem of describing MM tur-

bulent phenomena in the presence of the anisotropy introduced by a mean do

magnetic field. We proceed numerically, using a two dimensional, spectral-

method, incompressible M&? code which has been modified to include the presence

of a mean de magnetic field.

It would, of course, have been preferable to have used three-dimen-

sional numerics. However, codes with adequate resolution to study three dimen-

sional MHD turbulence at high mechanical and magnetic Reynolds numbers are rare,

and groups with adequate computer resources to study MHD turbulence with them

systematically are rarer still. It has been possible to represent in two

dimensions several of the features which we believe to be central to the three

dimensional case.

There are relatively few published results of laboratory measurements

of MHD turbulence. Five important papers are due to Robinson, Rusbridge, and

Saunders (1968), Rusbridge (1969), Robinson and Rusbridge (1971), Zweben, Menyuk

and Taylor (1979), and Zweben and Taylor (19811. The first three of these

report measurements on the Culham-Harwell ZETA toroidal Z-pinch, and the last

two, measurements on the UCLA Macrotor Tokamak. The most important two features

that emerged from the magnetic fluctuation measurements on both machines were:

(1) the single-point frequency spectra were broad-band, extending from a few

hundred kiloherz down to the lower limit of the frequency resolution, u ith a
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notable absence of spikes or peaks; and (2) the wave-number spectra were

peaked sharply in the direction perpendicular to the mean field, which mani-

fested itself as a large ratio of parallel to perpendicular correlation lenghts

(?10). Both of these behaviors will be seen below to emerge from the evolution

of initially isotropic spectra in two dimensions.
•

The presence of a similar anisotropy is essential, in one form or

another, to a theoretical derivation of the Strauss equations (Strauss 1976, 	 It

Montgomery 1982). The Strauss equation are a reduced set of MED equations,

intermediate between two and three dimensions, which have found wide applica-

bility to tokamak dynamics and may have considerably broader utility. It is

unclear how to proceed in their derivation if the strong anisotropy is not

present initially, and it Would be reassuring to know that an initially isotro-

pic spectrum would relax to an appropriately anisotropic one. 	 4

The code used `sere has evolved from the spectral-method techniques

given by Orszag (1971) and Patterson and Orszag (1971). Fyfe, Joyce, and

Montgomery (1977a,b) and Matthaeus and Montgomery (1980, 1981) have used

earlier versions of the present code to study forced dissipative MHD turbulence,

selective decay processes, and the evolution of the sheet pinch, all in the

presence of periodic boundary conditions. Orszag and Tang (1979) have used

a similar code to study small scale effects in two dimensions, and Pouquet

(1978) has reported closure calculations for the same geometry. A general
•

review of two dimensional turbulence has been given by Kraichnan and Montgomery

(1980). None of the above work addresses the case of a finite mean do magnetic
J

field.

The outline of this present paper is as follows. In § 2, the

f
	 dynamical equations are described: they are only a slight modification of

those used previously. The computational technique is briefly remarked upon

a
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in g 3. Results from the computations are presented in § 4, 5, and 6. The

most important effect consistently observed is the development of strong

anisotropy in the spectra from isotropic initial conditions. The anisotropy

develops towards the kinds of spectra which seem to prevail in the reported

measurements in ZETA and Macrotor. The development of the anisotropy depends

upon the combined effect of the external do magnetic field strength and the

size of the Reynolds numbers in an unexpected, but ultimately simple, way.
t

A simple model of the effect is offered in 7, where the results are briefly

summarized and further di-ections for research are indicated.

a

WE
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2. Dynamical Equations

The incompressible, dissipative M equations in two dimensions are

used. The magnetic field consists of a constant mean field part k = Bow,

plus a time-dependent zero-mean turbulent part B = (Bx , y, 0) = 9x(eza). The

magnetic vector potential is 6 za(x, y, t) so that the Coulomb gauge is employed.

For all variables, a/az - 0. The velocity field v = (X, vy, 0) = ox(ez0 is

expressed in terms of a stream function _ *(x, y, t) and has zero mean. In

what has become a standard set of dimensionless variables, the vorticity

W = wez = Oxy, so that w - 42^. Similarly, the electric current J = Je z , VLth

02a = -J.

Magnetic fields are measured in terms of the initial root mean square

turbulent field strength B. Velocities are measured in units of the Alfven

speeu corresponding to B. The dimensionless viscosity and resistivity v and ri

are the reciprocals of mechanical and magnetic Reynolds numbers, respectively.

The simplest form of the dynamical equations is, in the two-dimensional

geometry,

T + v •9w = B •0j + v02w + Bo ax	 (1)

and

as 
+ v • ©a = nV2a + B a"

T I	 oax

Without the Bo terms, eqs. (1) and (2) become those considered

previously. In a recent derivation (Montgomery, 1982), the Strauss (1976)

equations were re-derived using a perturbation expansion of the full set of

incompressible W equations in three dimensions, in powers of B/ o. It was

necessary to assume in the derivation that the time derivatives Vat remained

of 0(1), or that no zeroth-order population of Alfven waves was present. (The

(2)



linearized solutions for the three-dimensional case, as for eqs. (1) and (2),

is just a superposition of Alfven waves with angular frequencies w(k) _ +k • o,

where k is the wavenumber.) An objective of the present computation is to

see how a spectrum evolves which does contain an initially isotropic spectrum

of Alfven waves. It will be shown that the spatial dependence of such a spectrum

on the parallel spatial coordinate x becomes progressively relatively w,raker

with time.

0

1

r
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3. Computational Technique

The essence of the computational method is that all physical fields

are expanded in truncated Fourier series. The Fourier coefficients are

stepped forward in time and are saved at predetermined time steps to provide

a history of the dynamical evolution If the field variables. To be explicit,

Fourier representations of w and a (for example) are (see, e.g., Fyfe et al, 	 •

1977a, b)c	 f

w(x,t) = Ekw(k,t)exp(ik-x) 	 (3)

a(x,t) = Eka(k,t)exp(ik • x),	 (4)

where k = ( kx , k y ) and k  and k  are integers. Thus the dimension of the

square box is chosen for convenience to be 27r. The Fourier coefficients

retained lie in the range kmin - 1 < Ikl < k max , where kmax 
is essentially

limited by available computer time. Limitations on the Reynolds numbers are

provided by the requirements that v and n be large enough so that to Fourier

coefficients for jkj > kmax are suppressed.

The first test of the code was to ran it with the dissipative terms

removed. Conservation laws can then be tested and comparisons can be made

between the computed behavior of the Fourier coefficients and the predictions

of the (unphysical) absolute equilibrium ensemble theory (sta, e.g., Kraichnan
a

and Montgomery, 1980).

The second step was to compare dissipative results from two runs, both

having twice the other's value of k max , and thus having twice the spatial

resolution. The third step was to run several cases with varying values for

v and n at a particular value of Bo , to determine the influence of the Reynolds



only in the value of Bo , thereby investigating the effect that varying mean

magnetic field strength has on the dynamics.

Initial Fourier coefficients were chosen so that they would be non-

zero only within a given annulus in k-apace. The w(k,t) were initially non-zero
i

only for kl < k < k29 and the s(k,t) were non-zero only for k3 < k < k4. Within

their respective annuli, the values of the w(k,0) were chosen so that all

iv(k,0)i = iw(k,0)i/k were equal, and the a(k,0) were chosen so that all

1B(k,0)i = kia(k,0)i were equal. The phases of the a(k,0) and w(k,0) were

assigned randomly. The specification of the initial Fourier coefficients was

completed by giving values for the magnetic energy E B = Ek jB(k,t)1 2/2 and the

kinetic energy E  - F.k iv(k,t)i 2j2 at t = 0.	 y

The total energy is E = EB + Ev , the "cross helicity" is 	 t

P = Ekv(k,t)•B*(:t,t)j2. The mean square vector potential is A - Ekia(k,t)i2/2.

E, P, and A are significant quantities in the theory of two dimensional MED

turbulence in the absence of a mean field: they are the only known non-

dissipative invariants which iamain invariant under truncation of the Fourier-

expanded (v = 0 = n) version of eqs. (1) and (2) with B o = 0. Tf Bo # 0, E

and P still have this status, but A does not. We may define R - EB/Ev as the

ratio of the energies.

About a dozen different sets of initial Fourier coefficients have

beet, used for various runs. Many of the sets exhibited similar behavior.

The number of different sets of initial conditions presented in this paper

has been kept to a minimum, but for the runs discussed, there are others

unreported for which the behavior was similar. Details of the runs explicitly

discussed here are collected in Tables 1 and 2.
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4. Non-dissipative Tests

To test the spectral code, several cases were run with v = n = 0,

and the results compared with absolute equilibrium ensemble theory. Such 	 2

results are, of course, unphysical, and should be regarded as preliminary to

the dissipative results presented in § 5.

Equilibrium ensemble theory for the Bo = 0 case was given by Fyfe

and Montgomery (1976); the case Bo # 0 is recovered by simply deleting the

third "rugged" constant of the motion A. The prediction is a simple equiparti-

tion, <1v(k)
1
2> = <iB(k)j 2> = const., independently of t. This is true for

all realizable values of <E> and <P>. The ratio <R> __ <E B>/<Ev> a 1, in sharp

contrast to the Bo = 0 case. There is no crowding to the long wavelengths as

max - -, as there is when Bo = 0.

Non-dissipative computations were carried out with B o = 0 and Bo = 1

for different sets of initial coefficients. Time averages were made of phase

.Awctions of the Fourier-coefficients and these were compared with ensemble

averages. The two should be equal to the extent that the system is ergodic.

The results of a single set of Fourier coefficients will be presented

here, call it set A. For run Al, Bo = 0, and for run A2, Bo = 1. For both

runs, k max = 16, E = 1.0, the time step was (256) -1 . The total number of time

steps was 12,800. For these conditions, kl - k3 = 3 and k2 = k4 = 5. Time

averages were performed over the last 11,520 time steps.

The comparison between the numerical results and the ensemble pre-

dictions is given in Table 1 and in Figures 1 through 4. In Table 1, the

behavior of E, P, A, and the evolving ratio R t EB/F.v is shown as a tunction

of time. The invariants E, P, and A for B o = 0 and E and P for Bo - 1 are

conserved to a few percent in all cases. Non-dissipative runs for initial

conditions "B"(EB = Ev = 1, k22 = 5, k2 z 8, k3	 = 10, k2 = 13) will not be re-

ported in detail.
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:n Figs. 1 through 4, the directionally averaged magnetic and kinetic

modal energies are presented for time averaged data. (Directional averaging

means averaging over oll values of k corresponding to a particular k 2 .) At

the lower values of k, where the number of degenerate QC's is sparse, occasion-

ally large anisotropies necessarily appear, but no systematic directionality

-as observed. An explicit comparison of these runs with corresponding dissi-

4 pative runs will be presented in the next section, after suitable measures

of anisotropy are defined. It will be seen that the non-dissipative runs,

in contrast to the dissipative ones, show no anisotropy when averaged over

long times.

In Figs. 1 through 4, the spectral predictions of the absolute

equilibrium ensemble theory are shown as solid lines and the plotted points

are the time-averaged results of the computations. No significant departures

from the predictions of the absolute equilibrium ensemble theory have been

observed in these runs, and in others not reported here. Typical behavior

for lmost all the jadividual Fourier modes (those with kX # 0) is: that of

an Alfven wave of angular frequency w(k) = tk•B o . This is the principal

qualitative difference in the time behavior observed between the B o = 0 and

Bo # 0 cases. Superposed on the Alfven-wave oscillations is a slower transfer

of excitation between the Fourier modes.

In the next few sections, we pass to a consideration of the dissipa-

tive cases. In order to maintain a common thread throughout the discussion,

we will primarily use set A as the initial conditions for the dissipative

runs to be presented. The principal quantities to be varied are the spatial

resolution k max , the values of the dissipation coefficients v and n, and

the external field strength B0.

IM

V
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5. Appearance of Anisotropy: Effects of Viscosity. Resistivity. and Spatial

Resolution

In this section, we describe dissipative runs. The presence of

dissipation is always central in the evolution of any real turbulent field.

We use primarily thn same initia l Fourier coefficients as those in

§ 4. The most striking effect we have observed is that when both dissipation

and a mean Bo ave present, anisotropy appears. The k spectrum evolves into 	 s

one peaked rerpendicularly to the mean field P o . We describe the dependence

of this anisotropy on the dissipation coefficients and the mean Bo , after first

remarking upon some considerations of necessary spatial resolution.

For an accurate solution to eqs. ( 1) and (2), ae must resolve the

smallest dynamically significant spatial scales that v and n permit. An estimate

for these is provided by the Kolmogoroff "dissipation wave number", constructed 	 S

by dimensional analysis based on the rate of dissipation of energy. For MHU

in two dimensions, it is

k  = [n-3 jdEB /di . ,n + v-3 1 dEv/dtjV
] 1/4 ,	 (5)

where 
JdEB/dtln 

and IdEvidtj V are the ohmic and viscous energy dissipation

rates, respectively. Ideally, k  should be less than kmax for accurate solu-

tion of eqs. (1) and (2) ani this provides at present the most severe limita-

tion on turbulence computations, both Navier-Stokes and MHD. For some

purposes, it may be that when the smallest scales are dynamically insignificant,

k  somewhat lPrger than 
max 

may be to'_erated, but kd»k ax must always signal

uselessness in a turbulence computation. Other measures of mean length 94^sles

for the turbulent field, such as those of Pao and Taylor (see, e.g., Leslie	 :

1973) may be used to characterize turbulent activity, but the Koimogoroff

scale is the one most widely accepted and we shall use it hereafter.
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The dissipation wave nibber may be adjusted empirically, for a given

set of initial Fourier coefficients, by raising v and n until the computed

k  remains no greater than k max . We consider here only the case v 	 (unit

magnetic Prandtl number).

#	 In the initial set of dissipative cases, there are six runs (A3

through A8, see Table 2), having Bo = 0 and B0 = 1 for v = = 0.005, 0.01

e	 and 0.02. The following characteristics were common to these six runs:

kmax = 32, time step = (256) -1 , total number of time steps = 12$0, initial

Fourier coefficients: set A. The temporal evolution of the variables E, P,

A, and Rt for the runs with v = rl = 0.01 are shown in figures 5 and 6. (Quali-

tatively similar behavior was observed for v = ri = 0.005 and 0.02, the decay

Limes simply increased and decreased, respectively.)

When B0 = 0, roughly twice as much magnetic as kinetic energy

develops; when Bo = 1, the ratio remains approximately unity. E, P, A all

monotonically decay for Bo = 0, but when B0 = 1, A aetus.11y increases at times,

but overall decays.

To measure anisotropy in the k spectrum, a set of angles were defined

for each Fourier-decomposable field,

0c^ = tan
-1

 { [ Ykky ^ Q( k ,t) 1 2/Zkkx 	2 11J2 }	 (6)

where Q is any one of the fie -., ,Is	 w, a, B, or J. For a k spectrum purely

normal to B0 , 8Q is 90°, and for an isotropic spectrum, 450.

Temporal evolution of the angles for B 0 = 0 and o = 1 is illustrated,

for runs A5 and Ae, in Figs. ; and 8, which both refer to v = n = 0.01. For

Bo = 0, the angles roam unsystematically about 45 0 , indicating isotropic

development. The anisotropy in Fig;. 8, for B 0 = 1, is typical. Notice that

e
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the angles tend to increase in the following order: 8^ < 8v < 8w, and

8a < 0B < 8^: the anisotropy is most pronounced at the shorter wavelengths.

Also, when we consider v = n = 0.005 and 0.02 as well, we see that the degree

of anisotropy tends to decrease with increasing v and n. The results are

summarized in Table 3, which displays averages of the 8 Q for v n = 0.005,

0.01, and 0.02 between times 1.5 and 5.0.

Also calculated were the dissipation wave number k  (eq. (6)), mean

square vorticity St = Ek lm(k.t)1 2 , and mean square current J = F.kjj(4,t)j2;

the 1ritt.er two quantities are required to evaluate eq. (6). The temporal

evolution of Q and J for runs A5 and A6 (v = n = 0.01) is shown in Fig. 9.

Table 4 displays the maximum values of k d , S2, and J for the six runs A3

through A8. In Table 4, it is apparent that the maximum dissipation wave

number decreases with increasing v and n , as do the maxima of J and Q. The

presence of a finite Bo also apparently enforces a more nearly equal partition

of dissipation between 0 and J.

From the foregoing results, it is clear that the maximum kd which

will fit inside the resolution max = 32 occurs for runs A5, A6, where

v = n = 0.01. To test the effect of lowering the resolution below kmax on

the results of runs A5 and A6, runs A9 and A10 were made with identical para-

meters to A5 and A6, tu-; with k
max	 Mix

= 16. (We also showed that halving k 	 al-

lowed doubling the time step.) In runs A9 and A10, the time histories of the

angles 0Q and the quantities kd, S2, and J were essentially the same as those

for A5 and A6 (see Shebalin, 1982, for further details). This insensivity

to halving the spatial resolution, so that max 
falls well inside kd , gives us

some confidence in the validity of the results of such runs at the higher

Reynolds numbers, such as runs A3 and A4, where 
kmax 

lies outside kd.

r

s
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the non-dissipative runs. In Fig. 10, we display the evolution of the angles

6v and 6B for a dissipative run B2 (v - - 0.0025). Both runs have the same

initial Fourier coefficients with ki = 5, k?_ $, k3 = 10, k^ = 13; EB - Ev for

both runs, and the non-vanishing Fourier coefficients have equal amplitudes

within their respective annuli, and random phases. (See Table 2.)

Referrin- to Fig. 10, we can see that for B1, although 8v and 8B

initially rise to about 51° and 550 respectively, they subsequently fall and

oscillate about 450 .  Run B2 , however, shows 6 v and 0  
rising to maxima of

approximately 66° and 680 , respectively, and then oscillating near those values.

At the beginning of the dissipationless run, there apparently is a tendency

toward anisotropy which cannot maintain itself; the v = n = 0.0025 run remains

strongly anisotropic, however. This behavior, involving the necessity of

small but finite dissipation in the maintenance of anisotropy, corresponds,

we believe, to a simple physical effect which is discussed in § 7. It is our

belief that no long-time anisotropy is to be expected without the presence of

dissipation, and (for reasons given in § 7) that the smaller the dissipation

coefficients, the greater the degree of anisotropy is likely to be. A computa-

tion which could afford the spatial resolution to resolve signirlL;antly

higher values of kd than we can resolve would see proportionately higher

degrees of anisotropy, we believe.

r
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6. Effects of Variable Mean Field Strength

Having discussed the effects of the spatial resolution kmax and

the dissipation coefficients v and n on the results, we pass to a consideration

of the effects of varying the mean field Bo . Set A is chosen for the initial

Fourier coefficients, and kmax = 16. Thus the runs in this section are initially,,

similar to A9 and A10, except that B o takes on the values 1/16, 1/8, 1/4, 1/2,

2, 4. 8, and 16. These values correspond to runs All through A18, respectively.

(Parameters for all runs considered appear in Table 2.)

Rather than display a multitude of graphs similar to those presented

for runs A9 and A10, we display mainly graphs of time averaged angles 6 Q. In

Fig. 11, we show 8Q, averaged over times 1.5 to 5.0, as functions of B o . In

Fig. 12, we show, as functions of B o , the maximum value of kd , the time when

this maximum occurs, the maximum enstrophy 0, and the maximum mean square

current J.

Figures 11 and 12 illustrate a number of interesting effects. First,

there is anisotropy which develops as 
B  

increases from zero. Se^::)nd, the

effect saturates: beyond a value of Bo of about 2, further increase in Bo

results in no further increase in anisotropy, for these values of k max , v, and

n• Third, the values of Q and J approach each other as B o increases, reflect-

ing a progressively more Alfven-wave-like behavior at the dissipation scales.

The anisotropy continued to be most pronounced at the 'iighest wave numbers: 	 0

6w and 83 were larger than the other angles.

A physical feeling for the configuration-space manifestations of

the anisotropy may be obtained from Fig. 13. There, contour plots are given

for the vort ; _ity w(x,t) and current J(x,t) at various times with a zero and

a non-zero value of Bo . For the plot in which Bo = 2 it is clear that, at
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time t 2.0, the vorticity and current cwtours have elongated in the direc-

tion of the mean field, reminiscent of the elongations that were reported in

the ZETA and Macrotor devices.

rG
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r



s

F-

1$	 1

7. Discussion

The linearized MHD equations in two and three dimensions result

from discarding the right hand sides of

av
-B -VB-vV2v=B • VB-v•Vv-^7p	 (7)

at

and

aB
at - B-Vv - nV2B = B•Vv - v • VB,	 (8)

subject to V • v = 0 = V-B. Temporarily ignoring the dissipation, the most

general linearized solutions can be written as B = b  + b L , v = -bR + bL,

where

bR = Ek bkex p(ik•x - iw(k)t) + C.C.

4

(9)
bL = Ek bkexp(ik • x + iw(k)t) + c.c.

with w(k) = k•B0 , "c.c." standL for complex conjugate, and the amplitudes

bR,L satisfy k • bk' L = 0, but are otherwise arbitrary. The division of the

fields, of course, is into right and left traveling waves.

Assuming that eqs. (9) are a satisfactory zeroth order solution to

eqs. (7) and (8), we may inquire, within a perturbation-theoretic framework,

about the effects of directionality on the modal transfer. We may substitute

the linear solutions into the right hand sides of eqs. (7) and (8) and proceed

iteratively to calculate the first nonlinear correction to the linear fields.

Detailed inspection shows that there is no net coupling between the right-

traveling waves with each other or the left traveling waves with each other.

The only non-zero couplings are between right and left traveling waves.
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that one interacting wave must be right traveling and the other left traveling.

If the two waves have wavenuoibers k l , k2 and frequencies w(kl ), - w(k2 )
1 the•

conditions that they be able to excite a third wave resonantly with wavenumber

f	 k3 and frequency tw(43 ) are that

k3 kl + k2

±W(k3 ) = w(kl ) - w(k2 ).	 (10)

Since w(k) = 4-%, eqs. (10) have a solution only if either w(k l ) = 0 or

w(k2 ) = 0, so that either kl cr k2 has zero component along B. . Thus, a

three-wave resonant interaction can result in the excitation of a wave with a

larger value of Iky I than that of either of the other two, but never with a

larger value of 1kx J. It is clear that excitations may readily transfer

energy by this process in the perpendicular direction in k space but not in

the para11E1 one.

An initially isotropic distribution in k space elongates in the

perpendicular direction until something stops the migration to larger Iky1.

In the present computation, that is either k  or, for the truncated non-

dissipative model, k max . In the latter case, eventual isotropization occurs

as a consequence of higher order processes. In the presence of finite dissipa-

tive decay, the anisotropy persists, as in Fig. 10.

We believe the above-described mechanism to be responsible for

the observed anisotropy of magnetic fluctuations in toroidal devices. For a

given level of excitations, k  increases as v and n decrease, so the effect
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should be most pronounced at hie,  Reynolds numbers. The independence of

further increases in Bo , beyond a certain modest level, must simply mean that

transfer in the parallel k-space direction has been effectively frozen relative

to the transfer perpendicular to B beyond a value of Bo just a few times the

mean fluctuating field strength.

The natural directions into which these investigations should be

taken are to some degree obvious. First, considerably higher Reynolds numbers, 	 t

with their necessarily higher spatial resolution, should be investigated.

Second, spatially inhomogeneous vacuum fields should be added to ascertain

the effects of mean field curvature on the anisotropy. Finally, the effects

of the mean fields on the small scales need to be ascertained: how does Bo

affect current filamentation, x-point behavior, and magnetic re-connection?

k
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Table 1. Non-dissipative runs (v = 0 	 for comparison with absolute

equilibrium ensemble theory [Time step: (256) -1 . Total no. of time steps:

12,80. Averages taken over last 11,520 time steps.]

Time	 Change
Initial

1.000

0.2354

0.03288

SInitial-Final)

2.9

7.9

0.06

E

P

A

Al

A;--

1.0000

0.2354

0.03288

Initial

1.0000

1.0000

Final

Al (B- 0)

0.9714

0.2167

0.03286

A2 (B- 1)

1.0150

0.2277

o. ol497

R - EBIEv

Final

1.0058

o.9825

Average

0.9782

0.2227

0.03288

1.0062

0.2313

o.ol489

Time
Average

l.o608

1.0004

1.5

3.3

54.5

Theoretical

1. o484

1.0000

i

t E

P

A

t



Table 2. Run Parameters

Total N of
Run max y a Bo Time Step Size , Time Steps

Al 16 0 0 1/256 12800
A2 16 0 1 1/256 12800
A3 32 .005 0 1/256 1260
A4 32 .005 1 1/256 1280
A5 32 .01 0 1/256 1280
A6 32 .01 1 1/256 1280
A7 32 .02 0 1/256 1280
A8 32 .02 1 1/256 1280
A9 16 .01 0 1/128 640
A10 16 .01 1 1/128 640
All 16 .01 1/16 1/128 640
Al2 16 .01 1/8 1/128 64o
A13 16 .01 1/4 1/128 640
A14 16 .01 1/2 1/128 640
A15 10 .01 2 1/256 1280
A16 16 .01 4 1/512 2560
A17 16 .01 8 1/1024 5120
A13 16 .01 16 1/2048 10240
B1 16 0 1 1/128 3200
B2 16 .0025 1 1/128 3200

Set A: initial equipartion of energy in all magnetic and kinetic Fourier modes.

Set B: initial equipartion of energy in Fourier modes such that 9 : k2 <_25;
Fourier modes outside this annulus initially set to zero.

Initial rms values of M and Iv^ Were both equal to one for sets A and B.

I



ORIGINAL PAGE IS
OF POOR QUALITY

Table 3.	 Average Angles uetaeen t = 1.5 and 5.0

v,n	 8i' 8a 8v 6B 8w _ e

.005	 53.4 50.6 58.2 59.3 64.0 67.5

.01	 51.6 48.5 54.8 55.0 60.5 64.o

.02	 48.7 46.5 50.8 50.2 53.6 56.6



Table 4. Maximum Values of k d' R and J for runs A3 through A8

B Max Max Max
Run. Y-1 n —a . kd Q i

A3 .005 0 49.6 25.0 51.8

A .005 1 48.3 30.6 38.0

A5 .01 0 32.2 17.0 39.0

A6 .01 1 31.4 21.4 27.8

A7 02 0 21.0 17.0 26.3

A8 .02 1 20.8 17.0 20.3

i

v
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i
f.

V

Fes. ,1. Directionally averaged kinetic energy sutra for rw Al

B
a 

n 0, v	 @,km&x s 16. Solid line is theoretical predictLou.

F	 . Directionally averaged ma, slit energy spectra for run

Bo 0, v . n a 0, k=x s 16. Solid line is theoretical prediction.

Directionally averted kinetic energy spectra-for ruts A2:

Bo - 1, V	 0, k	 n 16. Solid line is theoretical prediction.
max

F'i?,. 4. Directionally averaged mi ratic energy spectra for run A2:

c . 1. V . n . 0, 
kVWX 

a 16. Solid line i s theoretical prediction.

.	 The quant ities E, F, A, and R for run A5: Bo a 0, v an • 0.01

k x a 3z.

11&. ^.	 The quanti*_'. i E, P. A, and R for run A6: B  a 1, V a n * 0.01,

k	 i 3C.
AX

Fid.^	 Measures of anise-tropy for run A5: Bc * 0, v w n w 0.01, kmax n 32.

Ft +i .	 Measures of anisotropy for run A : go 1, v n n n 0.01,	
ax 

a 32.

Fig. g.	 a) Dissipation vuve number for run A5; b) dissipation gave number

for run A6; c) mean aquaro voetis ity for run A5, 0) mean square cur-

rent for run A5, e) mean square vorticity for run A6; f) mean square

current for run Acs.

10. The angles 0v and 
0  

for runs B1 ( B0 i 1, v n 	 @) and

	

o 0 1, a	 t.25).

D U- Measures of anisotropy as a function of mean field strength Bo.

Fig. _ 12. a) Maximum k  as a function of Dc b) time of max ltd : e) maximum mom

square vorti4ity as a function of B0 ; d) maximum mean square current

as a function of D .0
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Fig. 13. a) Vorticity of set A at t = 0; b) current of set A at t = 0;

c) vorticity of run A9 (Bo = 0, v = n = . 019 
kmax 

= 16) at t = 2.0;

d) current of run A9 at t = 0; e) vorticity of run A15 (B O = 2,

,., = n = . 01, max = 16) at t = 2.0; f) current of run A15 at t = 2.0.	 1`
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