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ABSTRACT

The development of anisotropy in an initially isotropic spectrum
is studied numerically for two-dimensional magnetohydrodynamic turbulencze.
The anisotropy develops due to the combined effects of an externally imposed
dc magnetic field and viscous and resistive dissipation at high wave numbers.
The effect is most pronounced at high mechanical and magnetic Reynolds numbers.

The anisotropy is greater at the higher wave numbers.



1. Introduction

In the last several years, a systematic theory of magnetohydrodynamic
(MHD) turbulence has developed, but it has dealt largely with the case in which
no mean dc magnetic field is present. The presence of & mean dc magnetic field
renders MHD turbulence inherently anisotropic, and one can no longer take
advantage of the contraction of the statistical description that the isotropy
provides. Here, we report a bLeginning on the prcblem of describing MHD tur-
bulent phenomena in the presence of the anisotropy introduced by a mean de
magnetic field. We proceed numerically, using a two dimensional, spectral-
method, incompressible MHY code which has been modified to include the presence
of a mean dc magnetic field.

It would, of course, have been preferable to have used three-dimen-
sional numerics. However, codes with adequate resolution to study three dimen-
sional MHD turbulence at high mechanical and magnetic Reynolds numbers are rare,
and groups with adequate computer resources to study MHD turbulence with them
systematically are rarer still. It has been possible to represent in two
dimensions several of the features which we believe to be central to the three
dimensional case.

There are relatively few published results of laboratory measurements
of MHD turbulence. Five important papers are due to Robinson, Rusbridge, and
Saunders (1968), Rusbridge (1969), Robinson and Rusbridge (1971), Zweben, Menyuk
and Taylor (1979), and Zweben and Taylor (1981,. fThe first three of these
report measurewents on the Culham-Harwell ZETA toroidal Z-pinch, and the last
two, measurements on the UCLA Macrotor Tokamak. The most important two features
that emerged from the magnetic fluctuation measurements on both machines were:
(1) the single-point frequency spectra were brcad-band, extending from a few

hundred kiloherz down to the lower limit of the frequency resolution, with a
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notable absence of spikes or peaks; and (2) the wave-number spectra were
peaked sharply in the direction perpendicular to the mean field, which mani-
fested itself as & large ratio of parallel to perpendicular correlation lenghts
(210). Both of these behaviors will be seen below to emerge from the evolution
of initially isotropic spectra in two dimensions.

The presence of a similar anisotropy is essential, in one form or
another, to a theoretical derivation of the Strauss equations (Strauss 1976,
Montgomery 1982). The Strauss equatiorn are a reduced set of MHD equations,
intermediate between two and three dimensions, which have found wide applica-
bility to tokamak dynamics and may have considerably broader utility. It is
unclear how to proceed in their derivation if the strong anisotropy is not
present initially, and it would be reassuring to know that an initially isotro-
pic spectrum would relax to an appropriately anisotropic one.

The code used 4ere has evolved from the spectral-method technigues
given by Orszag (1971) and PFatterson and Orszag (1971). Fyfe, Joyce, and
Montgomery (1977a,b) and Matthaeus and Montgomery (1980, 1981) have used
earlier versions of the present code to study forced dissipative MHD turbulence,
selective decay processes, and the evolution of the sheet pinch, all in the
presence of periodic boundary conditions. Orszag and Tang (1979) have used
8 similar code to study small scale effects in two dimensions, and Pouquet
(1978) has reported closure calculations for the same geometry. A general
review of two dimensional turbulence has been given by Kraichnan and Montgomery
(1980). None of the above work addresses the case of a finite mean dc magnetic
field.

The outline of this prezent paper is as follows. In § 2, the
dynamical equations are described: they are only a slight modification of

those used previously. The computational technique is briefly remarked upon



in § 3. Results from the computations are presented in § 4, 5, and 6. The
most important effect consistently observed is the development of strong
enisotropy in the spectra from isotropic initial conditions. The anisotropy
develops towards the kinds of spectra which seem to prevail in the reported
measurements in ZETA and Macrotor. The development of the anisotropy depends
upon the combined effect of the external dc magnetic field strength and the
size of the Reynolds numbers in an unexpected, bu* ultimately simple, way.

A simple model of the effect is offered in § T, where the results are briefly

summarized and further directions for research are indicated.




2. Dynamical Equations

The incompressible, dissinative MHD equations in two dimensions are
used. The magnetic field consists of a constant mean field part B, = Boéx,
plus a time-dependent zero-mean turbulent part B = (Bx, By’ 0) = Vx(é,a). The
magnetic vector potential is éza(x, ¥y, t) so that the Coulomb gauge is employed.

For all variables, 3/93z

0. The velocity field v = (vx, Vo 0) = Vx(82¢) is
expressed in terms of a stream function Y = Y(x, y, t) and has zero mean. 1In
what has become a standard set of dimensionless variables, the vorticity
w = méz = Vxy, so that w = -Vew. Similarly, the electric current § = 382, with
Vza = =J.

Magnetic fields are measured in terms of the initial root mean square
turbulent field strength B. Velocities are measured in units of the Alfvén
speeu corresponding to B. The dimensionless viscosity and resistivity v and n

are the reciprocals of mechanical and magnetic Reynolds numbers, respectively.

The simplest form of the dynamical equations is, in the two-dimensional

geometry,
it - - 00x
and
98 . Vs = NV Y
3w T Y Va = nV"a + Boax ' (2)

without the B terms, egs. (1) and (2) become those considered
previously. In a recent derivation (Montgomery, 1982), the Strauss (1976)
equations were re-derived using a perturbation expansion of the full set of
incompressible MHD equations in three dimensions, in powers of B/Bo. It was
necessary to assume in the derivation that the time derivatives 3/3t remained

of 0(1), or that no zeroth-order population of Alfvén waves was present. (The




linearized solutions for the three-dimensional case, as for eqs. (1) and (2),

is Just a superposition of Alfvén waves with angular frequencies w(k) = kB s
where k is the wavenumber.) An objective of the present computation is to

see how a spectrum evolves which does contain an initially isotropic spectrum

of Alfvén waves. It will be shown that the spatial dependence of such a spectrum
on the parallel spatial coordinate x becomes progressively relatively w2aker

with time.



3. Computational Technique

The essence of the computational method is that all physical fields
are expanded in truncated Fourier series. The Fourier coefficients are
stepped forward in time and are saved at predetermined time steps to provide
a history of the dynamical evolution .f the fielé varisbles. To be explicit,

Fourier representations of w and a (for example) are (see, e.g., Fyfe et al,

197Ta, b):
wix,t) = I wlk,t)exp(ik-x) (3)
alx,t) = La(k,t)exp(ik-x), (L)

where k = (kx, ky) and kx and kv are integers. Thus the dimension of the
square box is chosen for convenience to be 2m. The Fourier coefficients
retained lie in the range k . =1 ¢ x| < k op» Where k  is essentially
limited by available computer time. Limitations on the Reynolds numbers are
provided by the requirements tnut v and n be large enough so that tne Fourier
coefficients for |k| 2 k oy 8TE Suppressed.

The first test of the code was to run it with the dissipative terms
removed. Conservation laws can then be tested ard comparisons can be made
between the computed behavior of the Fourier coefficients snd the predictions
of the (unphysical) absolute equilibrium ensemble theory (sc2, e.g., Kraichnan
and Montgomery, 1980).

The second step was to compare dissipative results from two runs, both
having twice the other's value of kmax’ and thus having twice the spatial

resolution. The third step was to run several cases with varyiiig values for

v and n at a particular value of Bo’ to determine the influence of the Reynolds



numbers. Finally, the last step was to run a number of cases which differed
only in the value of Bo’ thereby investigating the effect that varying mean
magnetic field strength has on the dynamics.

Initial Fourier coefficients were chosen so that they would be non-
zero only within a given annulus in k-space. The w(g,t) were initially non-zero
only for kl <k 5,k2,
their respective annuli, the values of the w(g,o) were chosen so that all

and the a(k,t) vere non-zero only for ky < k <Ky, Within

|w(k,0)|/k were equal, and the a(k,0) were chosen so that all

lY(E’O)i

|B(k,0)|

k|a(k,0)| were equal. The phases of the a(k,0) and w(k,0) were
assigned randomly. The specification of the initial Fourier coefficients was
completed by giving values for the magnetic energy Ej = Zklg(g,t)l2/2 and the
kinetic energy E, = I, |y(k,t)|%/2 st t = 0.

The total energy is E = Ej + E , the "eross helicity" is
P = Iy(k,t)'B%(,t)/2. The mean square vector potential is A = I, [a(k,t)|%/2.
E, P,~and A are significant quantities in the theory of two dimens;onal MHD
turbulence in the absence of a mean field: they are the only known non-
dissipative invariants which :1eomain invariant under truncation of the Fourier-
expanded (v = 0 = n) version of eqs. (1) and (2) with B, =0. TfB $0, E
and P still have this status, but A does not. We may define R = EB/Ev as the
ratio of the energies.

about a dozen diff'erent sets of initial Fourier coefficients have
been vsed for various runs. Many of the sets exhibited similar behavior.
The number of different sets of initial conditions presented in this paper
has been k=pt to a minimum, but for the runs discussed, there are others
unreported for which the behavior was similar. Details of the runs explicitly

discussed here zre collected in Tables 1 and 2.
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4, Non~dissipative Tests

To test the spectral code, several cases were run with v=n= 0,
and the results compared with absolute equilibrium ensemble theory. Such
results are, of course, unphysical, and should be regarded as preliminary to
the dissipative results presented in § 5.

Equilibrium ensemble theory for the Bo = 0 case was given by Fyfe
and Montgomery (1976); the case Bo # 0 is recovered by simply deleting the
third "rugged" constant of the motion A. The prediction is a simple equiparti-
tion, <|g(g)|2> = <[§(§)l2> = const., independently of k. This is true for
all realizable values of <E> and <P>, The ratio <R> = <EB>/<EV> = 1, in sharp
contrast to the B° = 0 case. There is no crowding to the long wavelengths as
kmax + ®, as there is when B° = Q.

Non-dissipative computations were carried out with Bo = 0 and Bo =1
for different sets of initial coefficients. Time averages were made of phase
functions of the Fourier coefficients and these were compared with ensemble
averages. The two should be equal to the extent that the system is ergodiec.

The results of a single set of Fourier coefficients will be presented
here, call it set A. For run Al, Bo = 0, and for run A2, Bo =1, For both
runs, kmax =16, E = 1.0, the time step was (256)_1. The total number of time

steps was 12,800. For these conditions, kl =k =3 and k, = kh = 5, Time

3 2
averages were performed over the last 11,520 time steps.

The comparison hetween the numerical results and the ensemble pre-
dictions is given in Table 1 and in Figures 1 through L. 1In Table 1, the
behavior of E, P, A, and the evolving ratio Rt S E.B/Ev is shown as a ftunction
of time. The invariants E, P, and A for Bo = 0 and E and P for Bo = ] are
conserved to a few percent in all cases. Non-dissipative runs for initial
conditions "B"(EB =E, =1, kf = 5, kg = 8, k§ =10, ki = 13) will not be re-
ported in detail.

N, AL DA o VI
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In Figs. 1 through 4, the directionally averaged magnetic and kinetic
modal energies are presented for time averaged data. (Directional averaging
means averaging over sll values of k corresponding 1o a particuler k2.) At
the lower values of k, where the number of degenerate k's is sparse, occasion=-
ally large anisotropies necessarily appear, but no systematic directionality
vas observed. An explicit comparison of these runs with corresponding dissi-
pative runs will be presented in the next section, after suitable measures
of anisotropy are defined. It will be seen that the non-dissipative runs,
in contrast to the dissipative ones, show no anisotropy when averaged over
long times.

In Figs. 1 through 4, the spectral predictions of the absolute
equilibrium ensemble theory are shown as solid lines and the plotted points
are the time-averaged results of the computations. No significant deparcures
from the predictions of the absolute equilibrium ensemble theory have been
observed in these runs, and in others not reported here. Typical behavior
for 1lmost all the judividual Fourier modes (those with k # 0) iz that of
an Alfvén wave of angular frequency w(g) = :5-§o. This is the principal
qualitative difference in the time behavior obszserved between the Bo = 0 and
Bo # 0 cases. Superposed on the Alfvén-wave oscillations is a slower transfer
of excitation between the Fourier modes.

In the next few sections, we pass tu a consideration of the dissipa-~
tive cases. In order to maintain a common thread throughout the discussion,
we will primarily use set A as the initial conditions for the dissipative
runs to be presented. The principul quantities to be varied are the spatial
resolution kmax’ the values of the dissipation coefficients v and n, and

the external field strength Bo'
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5. Appearance of Anisotropy: Effects of Viscosity, Resistivity, and Spatial

Resolution

In this section, we descrive dissipative runs. The presence of
dissipation is always central in the evolution of any real turbulent field.

We use primarily the same initisl Fourier coefficients as those in
§ 4, The most striking effect we have observed is that when both dissipation
and a mean Bo ave present, anisotropy appears. The k spectrum evolves into
one peaked perpendicularly to the mean field Eo' We describe the dependence
of this anisotropy on the dissipation cvefficients and the mean Bo’ after first
remarking upon some considerations of necessary spatial resolution.

For an accurate solution to egs. (1) and (2), we must resolve the
emallest dynamically significant spatial scales that v and n permit. An estimate
for these is provided by the Kolmogoroff "dissipation wave number", constructed
by dimensional analysis based on the rate of dissipation of energy. For MHD

in two dimensions, it is

/4

kg = [n72|agy/ac] + v73|ag fae] 1M, (5)

vhere ldEB/dt]n and |dE /dt| are the ohmic and viscous energy dissipation
rates, respectively. Ideally, kd should be less than kmax for accurate golu-
tion of egs. (1) and (2) ani this provides at present the most severe limita-
tion on turbulence computations, both Navier-Stokes and MHD., For some

purposes, it may be that when the smallest scales are dynamically insignificant,
kd somewhat larger than kmax may be tclerated, but kd>>kmax must always cignal
uselessness in a turbulence computation. Other measures of mean length scales
for the turbulent field, such as those of Pao and Taylor (see, e.g., Leslie
1973) may be used to characterize turbulent activity, but the Kolmogoroff

scale is the one most widely accepted and we shall use it hereafter.
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The dissipation wave nunber may be adjusted empirically, for a given
set of initial Fourier coefficients, by raising v and n until the computed
kd remains no greater than kmax' We consider here only the case v = n (unit
magnetic Prandtl number).

In the initial set of dissipative cases, there are six runs (A3
through A8, see Table 2 ), having Bo = 0 and BO =1 for v=n = 0.005 0.0l
and 0.02. The following characteristics were common to these six runs:
Kiax = 32> time step = (256)‘1, total number of time steps = 1280, initial
Fourier coefficients: set A. The temporal evolution of the variables E, P,
A, and R, for the runs with v = n = 0.0l are shown in figures 5 and 6. (Quali-

tatively similar behavior was observed for v = n = 0.005 and 0.02, the decay

times simply increased and decreased, respectively.)

When BO 0, roughly twice as much magnetic as kinetic energy

1, the ratio remains approximately unity. E, P, A all

develops; when Bo
monotonically decay for BO = (0, but when Bo =1, A actually increases at times,
but overall decays.

To measure anisotropy in the k spectrum, a set of angles were defined
for each Fourier-decomposable field,

0 = tan™t (1 otk 253 k. (2112 (6)

where Q is any one of the fieids y, v, w, a, B, or J. For a k spectrum purely

normal to go, 6, is 900, and for an isotropic spectrum, hso.

Q
Temporal evolution of the angles for BO = 0 and Bo = 1 is illustrated,

for runs A5 and A6, in Figs. 7 and 8, which both refer to v = n = 0.01. For

BO = (0, the angles roam unsystematically about hso, indicating isotropic

development. The anisotropy in Fig. 8, for Bo =1, is typical. Notice that
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the angles tend to increase in the following order: Gw < ev < Gw, and

ea < GB <9 the anisotropy is most pronounced at the shorter wavelengths.

3
Also, when we consider v = n = 0,005 and 0.02 a5 well, we see that the degree
of anisotropy tends to decrease with increasing v and n. The results are
summarized in Table 3, which displays averages of the BQ for v = n = 0.005,
0.01, and 0.02 between times 1.5 and 5.0.

Also calculated were the dissipation wave number ky (eq. (6)), mean
square vorticity Q = Zklw(g.t)le, and mean square current J = zkld(g,t)]2;
the latier two quantities are required to evaluate eq. (6). Th; temporal
evolution of Q and J for runs A5 and A6 (Vv = n = 0.01) is shown in Fig. 9.
Table L4 displays the maximum values of kd’ 2, and J for the six runs A3
through A8. In Table L, it is apparent that the maximum dissipation wave
number decreases with increasing v and n, as do the maxima of J and . The
presence of & finite Bo also apparently enforces a more nearly equal partition
of dissipsation between  and J.

From the foregoing results, it is clear that the maximum k.d vhich
will fit inside the resolution kmax = 32 occurs for runs A5, A6, where
v=n=0.0l. To test the effect of lowering the resolution below kmax on
the results of runs AS and A6, runs A9 and Al0 were made with identical para-
meters to A5 and A6, tu: with kma.x = 16, (We also showed that halving K x al-
lowed doubling the time step.) In runs A9 and AlO, the time histories of the
Q, and J were essentially the same as those

angles O_ and the quantities k

Q a’
for AS and A6 (see Shebalin, 1982, for further details). This insensivity
to halving the spatial resolution, so that khax falls well inside kd, gives us
some confidence in the validity of the results of such runs at the higher

Reynolds numbers, such as runs A3 and AlL, where kmax lies outside kd'
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We should remark at this point on the question of the anisotropy of
the non-dissipative runs. 1n Fig. 10, we display the evolution of the angles
6, and 6, for a dissipative run B2 (v = n = 0.0025). Both runs have the same
initial Fourier coefficients with k° = 5, k2 = 8, k§ = 10, & =13; E; = E, for
both runs, and the non-vanishing Fourier coefficients have equal amplitudes
within their respective annuli, and random phases. (See Table 2.)

Referriig to Fig. 10, we can see that for Bl, although Ov and GB
initially rise to about Slo and 550 respectively, they subseguently fall and
oscillate about 45°. Run B2 , however, shows ev and BB rising to maxima of
approximately 665 and 680, respectively, and then oscillating near those values.
At the beginning of the dissipationless run, there apparently is a tendency
toward anisotropy which cannot maintain itself; the v = n = 0.0025 run remains
strongly anisotropic, however. This behavior, involving the necessity of
small but finite dissipation in the maintenance of anisotropy, corresponds,
we believe, to a simple physical effect which is discussed in § 7. It is our
belief that no long-time anisotropy is to be expected without the presence of
dissipation, and (for reasons given in § T) that the smaller the dissipation
coefficients, the greater the degree of anisotropy is likely to be. A computa-
tion which could afford the spatial resolution to resolve significantly
higher values of ky than we can resolve would see proportionately higher

degrees of anisotropy, we believe,.



6. Effects of Variable Mean Field Strength

Having discussed the effects of the spatial resolution kmax and
the dissipation coefficients v and n on the results, we pass to a consideration
of the effects of varying the mean field Bo' Set A is chosen for the initial
Fourier coefficients, and kmax = 16. Thus the runs in this section are initially
similar to A9 and A10, except that B  takes on the values 1/16, 1/8, 1/4, 1/2,

2, 4. 8, and 16. Thece values correspond to runs All through Al8, respectively.
(Parameters for all runs considered appear in Table 2.)

Rather than display a multitude of graphs similar to those presented
for runs A9 and Al10, we display mainly graphs of time averaged angles eq. In
Fig. 11, we show Oq, averaged over times 1.5 to 5.0, as functions of Bo. In
Fig. 12, we show, as functions of Bo’ the maximum value of kd’ +he time when
this maximum occurs, the maximum enstrophy 2, and the maximum mean square
current J.

Figures 11 and 12 illustrate a number of interesting effects. First,
there is anisctropy which deveiops as Bo increases from zero. Serond, the
effect saturates: beyond a value of Bo of about 2, further increase in Bo
results in no further increase in anisotropy, for these values of kmax' v, and
n. Third, the values of 2 and J apprgach each other as Bo incresases, reflect-
ing a progressively more Alfven-wave-like behavior at the dissipation scales.
The anisotropy continued to be most pronounced at the highest wave numbers:

Gw and 0, were larger than the other angles.

J
A physical feeling for the configuration-space manifestations of
the anisotropy may be obtained from Fig. 13. There, contour plots are given

for the vort®.ity w(x,t) and current j(x,t) at various times with a zero and

a non-zero value of Bo' For the plot in which Bo = 2 it is clear that, at
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time t = 2.0, the vorticity and current cc.tours have elongated in the direc-
tion of the mean field, reminiscent of the elongations that were reported in

the ZETA and Macrotor devices.

o AR 4 1ttt 0 o e e e




T. Discussion
The linearized MHD equations in two and three dimensions result

from discarding the right hand sides of

X B, VB - WY = BVB - vV - (M)

~0

and

9B
Py *Vv - nW°B = B-Vy - v'VB, (8)

subject to V'y = 0 = V-B. Temporarily ignoring the dissipation, the most

general linearized solutions can be written as B =D

R+EL’ Y='pR+I3L3
where
_ R . X
ER = 25 pgexp(lg x - iw(k)t) + c.c.
(9)
_ L. )
EL = 25 Qgexp(lg x + iw(k)t) + c.c.

with w(g) = g-go, "e.c." stand: for complex conjugate, and the amplitudes

QE’L satisfy k-b L

~

= (0, but are otherwise arbitrary. The division of the

> o

fields, of course, is into right and left traveling waves.

Assuming that egs. (9) are a satisfactory zeroth order solution to
eqs. (7) and (8), we may inquire, within a perturbation-theoretic framework,
about the effects of directionality on the modal transfer. We may substitute
the linear solutions into the right hand sides of egs. (7) and (8) and proceed
iteratively to calculate the first nonlinear correction to the linear fields.
Detailed inspection shows that there is no net coupling between the right-
traveling waves with each other or the left traveling waves witll each other.

The only non-zero couplings are between right and left traveling waves.
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To resonate effectively with a third, initially-unexcited Fourier
mode, there are matching conditions on both frequency and wavenumber which
must be met. These are very restrictive when it is taken into consideration
that one interacting wave must be right traveling and the other left traveling.
If the two waves have wavenumbers El’ k, and frequencies w(gl), - w(ga), the
conditions that they be able to excite a third wave resonantly with wavenumber

k, and frequency im(g3) are that

B35tk

iw(g3) = w(gl) - w(ge). (r0)

Since w(k) = k-B,» eas. (10) have a solution only if either w(gl) = 0 or
w(gQ) = 0, so that either gl cr §2 has zero component along Eo' Thus, &
three-wave resonant interaction can result in the excitation of a wave with a
larger value of Igyl than that of either of the other two, but never with a
larger value of |§x|. It is clear that excitations may readily transfer
energy by this process in the perpendicular direction in k space but not in
the parallel one.

An initially isotroric distribution in k space elongates in the
perpendicular direction until something stops the migration to larger lkyl.
In the present computation, that is either kd or, for the truncated non-
dissipative model, kmax' In the latter case, eventual isotropization occurs
as a consequence of higher order processes. In the presence of finite dissipa-
tive decay, the anisotropy persists, as in Fig. 10.

We believe the above-described mechanism to be responsible for
the observed anisotropy of magnetic fluctuations in toroidal devices. For a

given level of excitations, kd increases as v and n decrease, so the effect

o

.
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should be most pronounced at high Reynolds numbers. The independence of
further increases in Bo’ bevond a certain modest level, must simply mean that
transfer in the parallel k-space direction has been effectively frozen relative
to the transfer perpendicular to B beyond a value of Bo Just a few times the
mean fluctuating field strength.

The natural directions into which these investigations should be
taken ure to some degree obvious., First, considerably higher Reynolds numbers,
with their necessarily higher spatial resolution, should be investigated.
Second, spatially inhomogeneous vacuum fields should be added to ascertain
the effects of mean field curvature on the anisotropy. Finally, the effects
of the mean fields on the small scales need to be ascertained: how does B,

affect current filamentation, x-point behavior, and magnetic re-connection?
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Table 1. KNon-dissipative runs (v = 0 = n) for comparison with absolute
equilibrium ensemble theory [Time step: (256)’1. Total no. of time steps:
12,807, Averages taken over last 11,520 time steps.) 7
\
Time % Change
Initial Final Average (Initial-Final)
Al(Bo = 0)
E 1.000 0.971L 0.9782 2.9
P 0.2354 0.2167 0.2227 7.9
A 0.03288 0.03286 0.03288 0.06
A2(Bo = 1)
E 1.0000 1.0150 1.0062 1.5
.
P 0.2354 0.2277 0.2313 3.3
A 0.03288 0.01k97 0.01489 54,5
R=E/E
' E Time
Initial Final Average Theoretical
A 1.0000 1.0058 1.0608 1.0484

Ac 1.0000 0.9825 1.000k 1.0000
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Table 2, Run Parameters

K B Totul # of

Run max v,n o Time Step Size  Time Steps
A 16 0 0 1/256 12800
A2 16 0 1 1/256 12800
A3 32 . 005 0 1/256 1280
Al 32 . 005 1 1/256 1280
A5 32 .01 0 1/256 1280
A6 32 .01 1 1/256 1280
AT 32 .02 0 1/256 1280
A8 32 .02 1 1/256 1280
A9 16 .01 0 1/128 640
A0 16 .01 1 1/128 640
Al 16 .01 1/16 1/128 640
Al12 16 .0l 1/8 1/128 6Lo
A13 16 .01 1/4 1/128 640
ALl 16 .01 1/2 1/128 6Lo
AlS 16 .0l 2 1/256 1280
A6 16 .0l L 1/512 2560
ALT 16 .01 8 1/102L 5120
A3 16 .0l 16 1/2048 10240
Bl 16 0 1 1/128 3200
Bz 16 .0025 1 1/128 3200

Set A: initial equipartion of energy in all magnetic and kinetic Fourier modes.

Set B: initial equipartion of energy in Fourier modes such that 9 < k2 < 25;
Fourier modes outside this annulus initially set to zero.

Initial rms values of |B|% and |V|2 were both equal to one for sets A and B,
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Average Angles Letween t = 1.5 and 5.0

51.6

L8.7

50-6

L8.s

k6.5

58.2

54.8

59.8

59.3

55.0

50.2

60.5

53.6

25

67-5

6k.0

56.6
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Maximum Values of k,, 1 and J for runs A3 through A8

wn %
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Fig. 10.

FIGURE CAPTIONS .

Diréeticn;llf averaged kinetic energy :pactrt for run Al:-

By= 0, ve=n=0, k =16 Solid line is theoretical prediction.
Directionally averaged magnetic energy spectra for run Al: i ‘
B,= 0, vans 0, k., =16 Solid line is theoretical prediction.
Directionally averaged kinetic energy spectra for run A2: 7 7

B =1, v=n=o, kmax = 16, S01i¢ line la theoretical prediction.
Directionally averaged msgretic energy spectra for run A2:
B,=l,vena=o, Koax ™ 16, BSolid line is theafeticgl predietion.
The guantitiea E, P, A, and R for run A5: Be =0, v=q = 0,01,

Kpax " 3

The quanti*’ .= E, P, A, and R for run AG: B@ =1, vanew=0,01,
km&x = 32,

Meaaures of aniactropy for run AS5: BQ =0, ven= 00, kmax = 32,
Measurea of anisotropy for run A6: B, = i, v=n=0.01, kmax = 32,
a) Dissipation wave number for run A5; b) disalpation wave number
for run A6; ¢) mean square vorticity for run AS; <) mean square cur-
rent for run A5; e) mean aquare vorticity for run A6; ) mean aquare
current for run Ao,

The angles Bv and BE for runa Bl (BQ =1, ven=20)and B2

(B, = 1, v =n=0,0025).

Measures of anisotropy as a function of mean field strength B@.

a) Maximum ky a8 8 function of Ba; b) time of max kys ¢) maximum mean

aquare vorticity as a function of Ba; d) maximum mean square current

as a function of B .
o



Fig. 13.

28

a) Vorticity of set A at t = 0; b) current of set Aat t = 03

¢ vorticity of run A9 (Bo =0, v=ns= .01, Koox = 16) at t = 2.0;

d) current of run A9 at t = 0; e) vorticity of run AlS (Bo 2,

v=n= .01, k.max = 16) at t = 2.0; f) current of run Al5 at t = 2.0.
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(DEGREES) ]
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40 —~ L V T )
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Fig. 10. The angles Bv and BB for runs Bl (Bo =l,vsns Q) and B2

(Bo =1, v=n= 0,0025).
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a) Vorticity of set A at t = 0; b) current of set A at t = 0;

. 13.
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= 16) at t = 2.0;
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¢) vorticity of run A9 (B

32,
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d) current of run A9 at t = 0; e) vorticity of run Al5 (B

= 16) at t = 2.0; f) current of run AlS at t = 2.0.
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