1,049 research outputs found
The asymmetry of the dimension 2 gluon condensate: the finite temperature case
In this paper, we continue the work begun in a previous article. We compute,
in the formalism of local composite operators, the value of the asymmetry in
the dimension two condensate for finite temperatures. We find a positive value
for the asymmetry, which disappears when the temperature is increased. We also
compute the value of the full dimension two condensate for higher temperatures,
and we find that it decreases in absolute value, finally disappearing for
sufficiently high temperature. We also comment on the temperature dependence of
the electric and magnetic components of the condensate separately. We compare
our results with the corresponding lattice date found by Chernodub and
Ilgenfritz.Comment: 8 pages, 4 figure
Exploring center vortices in SU(2) and SU(3) relativistic Yang-Mills-Higgs models
We develop numerical tools and apply them to solve the relativistic
Yang--Mills--Higgs equations in a model where the SU(N) symmetry is
spontaneously broken to its center. In SU(2) and SU(3), we obtain the different
field profiles for infinite and finite center vortices, with endpoints at
external monopole sources. Exploration of parameter space permits the detection
of a region where the equations get Abelianized. Finally, a general
parametrization of the color structure of SU(2) fields leads us to a reference
point where an Abelian-like BPS bound is reconciled with N-ality.Comment: 25 pages, 5 figure
Effect of the Gribov horizon on the Polyakov loop and vice versa
We consider finite temperature SU(2) gauge theory in the continuum
formulation, which necessitates the choice of a gauge fixing. Choosing the
Landau gauge, the existing gauge copies are taken into account by means of the
Gribov-Zwanziger (GZ) quantization scheme, which entails the introduction of a
dynamical mass scale (Gribov mass) directly influencing the Green functions of
the theory. Here, we determine simultaneously the Polyakov loop (vacuum
expectation value) and Gribov mass in terms of temperature, by minimizing the
vacuum energy w.r.t. the Polyakov loop parameter and solving the Gribov gap
equation. Inspired by the Casimir energy-style of computation, we illustrate
the usage of Zeta function regularization in finite temperature calculations.
Our main result is that the Gribov mass directly feels the deconfinement
transition, visible from a cusp occurring at the same temperature where the
Polyakov loop becomes nonzero. In this exploratory work we mainly restrict
ourselves to the original Gribov-Zwanziger quantization procedure in order to
illustrate the approach and the potential direct link between the vacuum
structure of the theory (dynamical mass scales) and (de)confinement. We also
present a first look at the critical temperature obtained from the Refined
Gribov-Zwanziger approach. Finally, a particular problem for the pressure at
low temperatures is reported.Comment: 19 pages, 8 .pdf figures. v2: extended section 3 + extra references;
version accepted for publication in EPJ
SU(2) x U(1) Yang-Mills theories in 3d with Higgs field and Gribov ambiguity
We study the structure of the gauge propagators of a 3d version of the electroweak interaction in terms of the Higgs vacuum expectation value., of the non-Abelian gauge coupling g, and of the Abelian gauge coupling g', when nonperturbative effects related to the non-Abelian gauge fixing are introduced by means of an adapted path integral measure. In the perturbative regime of small nonAbelian coupling g and sufficiently large, nu the well-known standard Z and W propagators are recovered, together with a massless photon. In general, depending on the relative magnitudes of g, g' and., we uncover a quite different propagator structure. In a later stage of research, the results here derived can be used to study the associated phase diagram in more depth
Renormalization aspects of N=1 Super Yang-Mills theory in the Wess-Zumino gauge
The renormalization of N=1 Super Yang-Mills theory is analysed in the
Wess-Zumino gauge, employing the Landau condition. An all orders proof of the
renormalizability of the theory is given by means of the Algebraic
Renormalization procedure. Only three renormalization constants are needed,
which can be identified with the coupling constant, gauge field and gluino
renormalization. The non-renormalization theorem of the gluon-ghost-antighost
vertex in the Landau gauge is shown to remain valid in N=1 Super Yang-Mills.
Moreover, due to the non-linear realization of the supersymmetry in the
Wess-Zumino gauge, the renormalization factor of the gauge field turns out to
be different from that of the gluino. These features are explicitly checked
through a three loop calculation.Comment: 15 pages, minor text improvements, references added. Version accepted
for publication in the EPJ
Implementing the Gribov-Zwanziger framework in N=1 Super Yang-Mills in the Landau gauge
The Gribov-Zwanziger framework accounting for the existence of Gribov copies
is extended to N=1 Super Yang--Mills theories quantized in the Landau gauge. We
show that the restriction of the domain of integration in the Euclidean
functional integral to the first Gribov horizon can be implemented in a way to
recover non-perturbative features of N=1 Super Yang--Mills theories, namely:
the existence of the gluino condensate as well as the vanishing of the vacuum
energy.Comment: 19 pages, no figure
The asymmetry of the dimension 2 gluon condensate: the zero temperature case
We provide an algebraic study of the local composite operators A_\mu
A_\nu-\delta_{\mu\nu}/d A^2 and A^2, with d=4 the spacetime dimension. We prove
that these are separately renormalizable to all orders in the Landau gauge.
This corresponds to a renormalizable decomposition of the operator A_\mu A_\nu
into its trace and traceless part. We present explicit results for the relevant
renormalization group functions to three loop order, accompanied with various
tests of these results. We then develop a formalism to determine the zero
temperature effective potential for the corresponding condensates, and recover
the already known result for \neq 0, together with <A_\mu
A_\nu-\delta_{\mu\nu}/d A^2>=0, a nontrivial check that the approach is
consistent with Lorentz symmetry. The formalism is such that it is readily
generalizable to the finite temperature case, which shall allow a future
analytical study of the electric-magnetic symmetry of the condensate,
which received strong evidence from recent lattice simulations by Chernodub and
Ilgenfritz, who related their results to 3 regions in the Yang-Mills phase
diagram.Comment: 25 page
Effective deep learning training for single-image super-resolution in endomicroscopy exploiting video-registration-based reconstruction
PURPOSE: Probe-based confocal laser endomicroscopy (pCLE) is a recent imaging modality that allows performing in vivo optical biopsies. The design of pCLE hardware, and its reliance on an optical fibre bundle, fundamentally limits the image quality with a few tens of thousands fibres, each acting as the equivalent of a single-pixel detector, assembled into a single fibre bundle. Video registration techniques can be used to estimate high-resolution (HR) images by exploiting the temporal information contained in a sequence of low-resolution (LR) images. However, the alignment of LR frames, required for the fusion, is computationally demanding and prone to artefacts. METHODS: In this work, we propose a novel synthetic data generation approach to train exemplar-based Deep Neural Networks (DNNs). HR pCLE images with enhanced quality are recovered by the models trained on pairs of estimated HR images (generated by the video registration algorithm) and realistic synthetic LR images. Performance of three different state-of-the-art DNNs techniques were analysed on a Smart Atlas database of 8806 images from 238 pCLE video sequences. The results were validated through an extensive image quality assessment that takes into account different quality scores, including a Mean Opinion Score (MOS). RESULTS: Results indicate that the proposed solution produces an effective improvement in the quality of the obtained reconstructed image. CONCLUSION: The proposed training strategy and associated DNNs allows us to perform convincing super-resolution of pCLE images
- …
