578 research outputs found
Effects of Hyperbolic Rotation in Minkowski Space on the Modeling of Plasma Accelerators in a Lorentz Boosted Frame
Laser driven plasma accelerators promise much shorter particle accelerators
but their development requires detailed simulations that challenge or exceed
current capabilities. We report the first direct simulations of stages up to 1
TeV from simulations using a Lorentz boosted calculation frame resulting in a
million times speedup, thanks to a frame boost as high as gamma=1300. Effects
of the hyperbolic rotation in Minkowski space resulting from the frame boost on
the laser propagation in the plasma is shown to be key in the mitigation of a
numerical instability that was limiting previous attempts
Evaluation of magnetic materials for static inverters and converters
Program studies materials for use in static inverters and converters. It gives suitable data on the behavior of commonly used materials when excited with square wave power
Modeling laser wakefield accelerators in a Lorentz boosted frame
Modeling of laser-plasma wakefield accelerators in an optimal frame of
reference \cite{VayPRL07} is shown to produce orders of magnitude speed-up of
calculations from first principles. Obtaining these speedups requires
mitigation of a high-frequency instability that otherwise limits effectiveness
in addition to solutions for handling data input and output in a
relativistically boosted frame of reference. The observed high-frequency
instability is mitigated using methods including an electromagnetic solver with
tunable coefficients, its extension to accomodate Perfectly Matched Layers and
Friedman's damping algorithms, as well as an efficient large bandwidth digital
filter. It is shown that choosing the frame of the wake as the frame of
reference allows for higher levels of filtering and damping than is possible in
other frames for the same accuracy. Detailed testing also revealed
serendipitously the existence of a singular time step at which the instability
level is minimized, independently of numerical dispersion, thus indicating that
the observed instability may not be due primarily to Numerical Cerenkov as has
been conjectured. The techniques developed for Cerenkov mitigation prove
nonetheless to be very efficient at controlling the instability. Using these
techniques, agreement at the percentage level is demonstrated between
simulations using different frames of reference, with speedups reaching two
orders of magnitude for a 0.1 GeV class stages. The method then allows direct
and efficient full-scale modeling of deeply depleted laser-plasma stages of 10
GeV-1 TeV for the first time, verifying the scaling of plasma accelerators to
very high energies. Over 4, 5 and 6 orders of magnitude speedup is achieved for
the modeling of 10 GeV, 100 GeV and 1 TeV class stages, respectively
Speeding up simulations of relativistic systems using an optimal boosted frame
It can be computationally advantageous to perform computer simulations in a
Lorentz boosted frame for a certain class of systems. However, even if the
computer model relies on a covariant set of equations, it has been pointed out
that algorithmic difficulties related to discretization errors may have to be
overcome in order to take full advantage of the potential speedup. We summarize
the findings, the difficulties and their solutions, and show that the technique
enables simulations important to several areas of accelerator physics that are
otherwise problematic, including self-consistent modeling in three-dimensions
of laser wakefield accelerator stages at energies of 10 GeV and above.Comment: To be published in the proceedings of DPF-2009, Detroit, MI, July
2009, eConf C09072
Improved quantification of Chinese carbon fluxes using CO2/CO correlations in Asian outflow
[1] We use observed CO2:CO correlations in Asian outflow from the TRACE-P aircraft campaign (February–April 2001), together with a three-dimensional global chemical transport model (GEOS-CHEM), to constrain specific components of the east Asian CO2 budget including, in particular, Chinese emissions. The CO2/CO emission ratio varies with the source of CO2 (different combustion types versus the terrestrial biosphere) and provides a characteristic signature of source regions and source type. Observed CO2/CO correlation slopes in east Asian boundary layer outflow display distinct regional signatures ranging from 10–20 mol/mol (outflow from northeast China) to 80 mol/mol (over Japan). Model simulations using best a priori estimates of regional CO2 and CO sources from Streets et al. [2003] (anthropogenic), the CASA model (biospheric), and Duncan et al. [2003] (biomass burning) overestimate CO2 concentrations and CO2/CO slopes in the boundary layer outflow. Constraints from the CO2/CO slopes indicate that this must arise from an overestimate of the modeled regional net biospheric CO2 flux. Our corrected best estimate of the net biospheric source of CO2 from China for March–April 2001 is 3200 Gg C/d, which represents a 45 % reduction of the net flux from the CASA model. Previous analyses of the TRACE-P data had found that anthropogenic Chinese C
In situ measurements of tropospheric volcanic plumes in Ecuador and Colombia during TC^4
A NASA DC-8 research aircraft penetrated tropospheric gas and aerosol plumes sourced from active volcanoes in Ecuador and Colombia during the Tropical Composition, Cloud and Climate Coupling (TC^4) mission in July–August 2007. The likely source volcanoes were Tungurahua (Ecuador) and Nevado del Huila (Colombia). The TC^4 data provide rare insight into the chemistry of volcanic plumes in the tropical troposphere and permit a comparison of SO_2 column amounts measured by the Ozone Monitoring Instrument (OMI) on the Aura satellite with in situ SO_2 measurements. Elevated concentrations of SO_2, sulfate aerosol, and particles were measured by DC-8 instrumentation in volcanic outflow at altitudes of 3–6 km. Estimated plume ages range from ~2 h at Huila to ~22–48 h downwind of Ecuador. The plumes contained sulfate-rich accumulation mode particles that were variably neutralized and often highly acidic. A significant fraction of supermicron volcanic ash was evident in one plume. In-plume O_3 concentrations were ~70%–80% of ambient levels downwind of Ecuador, but data are insufficient to ascribe this to O_3 depletion via reactive halogen chemistry. The TC^4 data record rapid cloud processing of the Huila volcanic plume involving aqueous-phase oxidation of SO_2 by H_2O_2, but overall the data suggest average in-plume SO_2 to sulfate conversion rates of ~1%–2% h^(−1). SO_2 column amounts measured in the Tungurahua plume (~0.1–0.2 Dobson units) are commensurate with average SO_2 columns retrieved from OMI measurements in the volcanic outflow region in July 2007. The TC^4 data set provides further evidence of the impact of volcanic emissions on tropospheric acidity and oxidizing capacity
Marine latitude/altitude OH distributions: Comparison of Pacific Ocean observations with models
Reported here are tropical/subtropical Pacific basin OH observational data presented in a latitude/altitude geographical grid. They cover two seasons of the year (spring and fall) that reflect the timing of NASA's PEM-Tropics A (1996) and B (1999) field programs. Two different OH sensors were used to collect these data, and each instrument was mounted on a different aircraft platform (i.e., NASA's P-3B and DC-8). Collectively, these chemical snapshots of the central Pacific have revealed several interesting trends. Only modest decreases (factors of 2 to 3) were found in the levels of OH with increasing altitude (0-12 km). Similarly, only modest variations were found (factors of 1.5 to 3.5) when the data were examined as a function of latitude (30° N to 30° S). Using simultaneously recorded data for CO, O3, H2O, NO, and NMHCs, comparisons with current models were also carried out. For three out of four data subsets, the results revealed a high level of correspondence. On average, the box model results agreed with the observations within a factor of 1.5. The comparison with the three-dimensional model results was found to be only slightly worse. Overall, these results suggest that current model mechanisms capture the major photochemical processes controlling OH quite well and thus provide a reasonably good representation of OH levels for tropical marine environments. They also indicate that the two OH sensors employed during the PEM-Tropics B study generally saw similar OH levels when sampling a similar tropical marine environment. However, a modest altitude bias appears to exist between these instruments. More rigorous instrument intercomparison activity would therefore seem to be justified. Further comparisons of model predictions with observations are also recommended for nontropical marine environments as well as those involving highly elevated levels of reactive non-methane hydrocarbons. Copyright 2001 by the American Geophysical Union
Warp-X: a new exascale computing platform for beam-plasma simulations
Turning the current experimental plasma accelerator state-of-the-art from a
promising technology into mainstream scientific tools depends critically on
high-performance, high-fidelity modeling of complex processes that develop over
a wide range of space and time scales. As part of the U.S. Department of
Energy's Exascale Computing Project, a team from Lawrence Berkeley National
Laboratory, in collaboration with teams from SLAC National Accelerator
Laboratory and Lawrence Livermore National Laboratory, is developing a new
plasma accelerator simulation tool that will harness the power of future
exascale supercomputers for high-performance modeling of plasma accelerators.
We present the various components of the codes such as the new Particle-In-Cell
Scalable Application Resource (PICSAR) and the redesigned adaptive mesh
refinement library AMReX, which are combined with redesigned elements of the
Warp code, in the new WarpX software. The code structure, status, early
examples of applications and plans are discussed
Seasonal differences in the photochemistry of the South Pacific: A comparison of observations and model results from PEM-Tropics A and B
A time-dependent photochemical box model is used to examine the photochemistry of the equatorial and southern subtropical Pacific troposphere with aircraft data obtained during two distinct seasons: the Pacific Exploratory Mission-Tropics A (PEM-Tropics A) field campaign in September and October of 1996 and the Pacific Exploratory Mission-Tropics B (PEM-Tropics B) campaign in March and April of 1999. Model-predicted values were compared to observations for selected species (e.g., NO2, OH, HO2) with generally good agreement. Predicted values of HO2 were larger than those observed in the upper troposphere, in contrast to previous studies which show a general underprediction of HO2 at upper altitudes. Some characteristics of the budgets of HOx, NOx, and peroxides are discussed. The integrated net tendency for O3 is negative over the remote Pacific during both seasons, with gross formation equal to no more than half of the gross destruction. This suggests that a continual supply of O3 into the Pacific region throughout the year must exist in order to maintain O3 levels. Integrated net tendencies for equatorial O3 showed a seasonality, with a net loss of 1.06×1011 molecules cm-2 s-1 during PEM-Tropics B (March) increasing by 50% to 1.60×1011 molecules cm-2 s-1 during PEM-Tropics A (September). The seasonality over the southern subtropical Pacific was somewhat lower, with losses of 1.21×1011 molecules cm-2 s-1 during PEM-Tropics B (March) increasing by 25% to 1.51×1011 molecules cm-2 s-1 during PEM-Tropics A (September). While the larger net losses during PEM-Tropics A were primarily driven by higher concentrations of O3, the ability of the subtropical atmosphere to destroy O3 was ∼30% less effective during the PEM-Tropics A (September) campaign due to a drier atmosphere and higher overhead O3 column amounts. Copyright 2001 by the American Geophysical Union
Recommended from our members
Ozone production in the upper troposphere and the influence of aircraft during SONEX: Approach of NO(x)-saturated conditions
During October/November 1997, simultaneous observations of NO, HO2 and other species were obtained as part of the SONEX campaign in the upper troposphere. We use these observations, over the North Atlantic (40-60°N), to derive ozone production rates, P(O3), and to examine the relationship between P(O3) and the concentrations of NO(x) (= NO + NO2) and HO(x) (= OH + peroxy) radicals. A positive correlation is found between P(O3) and NO(x) over the entire data set, which reflects the association of elevated HO(x) with elevated NO(x) injected by deep convection and lightning. By filtering out this association we find that for NO(x)>70 pptv, P(O3) is nearly independent of NO(x), showing the approach of NO(x)-saturated conditions. Predicted doubling of aircraft emissions in the future will result in less than doubling of the aircraft contribution to ozone over the North Atlantic in the fall. Greater sensitivity to aircraft emissions would be expected in the summer
- …
