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Abstract

Muodeling of laser-plasma wakefield accelerators in an optimal frame of rferencs [1] is shown to producs orders of
megnimde: speed-up of calcolaticss: from fivet principles. Obtaining these specdups requirss mitigation of a high-
frequency instability thet otherwise limits effectiveness in addition to solutions for handling data inpwt and output
in & relativistically boosted frame of reference. The observed high-frequency instability is mitigated using methods
incloding an electromagnetic solver with nable coefficients, its extension o accomadate Perfectly bMatched Lavers
ard Friedman's damping aigodthuns, as well 25 an efficient large bandwidih digital filter. It is shown that choosing
the frame of the wake at the frame of refarence allows for higher Javels of filiering amd damping thaa iz possible it
ather frames for the same arcoracy. Dietailed testing also revesled serendipitonsdy the existence of a singoisr time stap
ai which the instatility level is nomimized, independenily of numerical dispersion, thus indicaring that the observed
instabllity may not be due primarily to Nomerical Cerenkov a5 hag beer conjeciured. The techriques developed
for Cerenkov mitigation prove nonetheless to be very efficient at commlling the instability. Using these techniques,
agreement ak the percentage level is demonstraled between simolafons wsing different frames of reference, with
speedups reaching two orders of magnimde for & 0.1 OcV class stages. The methoed then allows dircot and cfficicnt
full-scale modeling of deeply depleicd laser-plasma stages of 10GeV-| TeV for the first time, verifying he scaling of
plasma accelerators (o very high encogies, Over 4, 5 and 6 eoders of magnimde specdup is achicvesd for the modeling
of 10 Ge¥, 100 GeV and 1 TV olass stages, respactively.

Kerwords: Taser wakefield accelerstion, pariicle-in-cell, plasma simulation, special relanivity, frame of reference,
haosted frame




Contents

1 Inireduction 2
2 Theorelical spoodup deopendency with te frame boost 4
21 Estimated specdup for L1-100GeWatages . . L . L. . L 0 oL e e e e e e 6

3 Input and owipast o somf from a boosted Trazne sitmdntion &
- 5 I 117 7
B S T 7

0 i I - 8

B2 ODPET . L L L L e e e e e e e e e e 9

4 High frequency mwtability and Numerical Cerenkov 9
41 Wideband lowpass digiml filleding . . . . . . . ... L. e e i it e 10
42 Temablesolver. . . . ... .. e e e e e 13
421 Mumetical dispersion . . . . . . . . L. . L L L i i b e e e L4

422  Coreor depogition and Ganss* Taw - . ., .. ., . bor e e e e e e e e 17

4.3 Fredmanadjustable damping . . . . - . . . . . . L. e e e e e e 17

3 Application to the modeling of lacer wakefield acceleration 19
51 Scaled 10GeWEBRBES . . . . . . . v i e s e e e e e e e i e e s e 19
5.1.1  Using standard numericaltechmiques - . .. - .. .. Lo oo oL oo i

512 Effect of filtering, solver with adjustable dispersion and damping . . . .. .. oL . .. 26

52 Fullscake I0GeVelassstages . . . . . o .0 0 i ot it i bt s oot et e e e e e 27
521 Stmwlatiems in 2-1/20 .. L L L oL oo Lo o e e e h e 28

522 Simudations in 30 . ... L e e e e e 28

5.3 Effects of numerical parameters on the obgerved dnstabality _ . . . . .. .. oL oL oo Lo 3l
531 Fffectsof gpatialresolotion. . . .. . . L oL oL L e a e 31

532 Bifectsof HMestey . . . . . v o o e e e e e e e i

533 Effects of feld gatheming proeedare . . .. L. L L L e e 32

J4 Fullscale 1) GeV -1 TeVclassstages . . . . . .. __ ... . . ... ... ... ¥

6 Conclusion and outheok 38
T Appendix [: One dimensioRal analysks of the CK solver 38
8 Appendix I1: Perfectly Matched Layer 3
T Ackmdwledgznents 41

1. Intredocdon

Laxet driven plasma waves offer orders of magnitude increages in aceelemting gradient over standard acoelerating
structures [2] (which are lirmited by electrical beeakdown), thus holding the promise of much shorter particle aceelera-
tors [3]. High guality electron beams of energy np-to 1 GeV have besn prodoced in just a few cortimeters [4, 5, 6, 71,
with 14 GeV stages being planned as modales of a high snsrey cotlider [3].

As the Jaser propagates theowgh a plasmina, it displaces electrons while ions remain essentially statc, creating a
pockeat of positive charges thar the displaced elecitons tush ta fill. The resulting cobareit periodic molicn of the
tkcmwens oxciliating around their original position <reates a wake with penodic stmemre following the laser, The
aftemnate conceptration of positive and negalive charges it the wake creales very intense slectric flelds. An eleciron {or
positron) beam injected with the right phese can be acoelerated by those elds 1o high encrgy in g much shivter distance
than Is postible it conventional pacticle accelerators. The efficiency and quality of the atcelerstion is governed by
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several factors which requirs precise tree-dimensional shaping of the plasma colarmn, 85 well as the laser and particle
beams, and understanding of their evolution.

Compuizr simulations have had a profound impace on the design and understanding of past end present sxper-
iments [4], with accurste modeling of the wake formation and bearn accelemtion requinng fully kinetic methods
(usually Patticie-In-Cell} with large computational resouress due 60 the wids ratypee of space atd tite scales inviolved
[10, 11]. Far example, modeling 14 GV stages for the LOASLS (LBNL) BELLA proposal [17] demanded 85 mamy
a& 5,000 procezsor hours for a one-dimengion simmlation on a NERSC supercomputer [13]. Various reduced models
hewe been developed to allow multidimensicnal simulations at manageable computational costs: Anid approximation
[14]. quasistatic approximation [15, 16, 17), laser envelope models [16], scaled parameters [13, 197, Howewer, the
varikns approximations that they require resolt in a namower range of appheability. As a result, even Using several
modils concurcently does ot usually provide s compkte desciiption. For example, scaled simnlations of 10 GeV
LPA stapes do not caphure comectly sonve essential transverse physics, e.g. the laser and beam betatron motion, which
can Jead fo inaccurale beam émittance (2 meagtire of the beam quality}, An snvelope description can capture these
effects correctly at full scale For the carly propagation through the plasma but esa fail as the laser spectrum broadens
doe 10 energy depletion a5 it propagates further in the plasma,

An aliemative spproach alkews for orders of magnitude speedup of simulations, whether at full or teduced scale,
via the preper chodce of 2 reference frame moving near the speed of light in the direction of the laser [1]. It dees
g0 Withoot alieration to the fondamental equations of particle mobion o electrodynamics, provided thal the high-
freqeency pare of the lght emited coupter 1o the direction of propagailon of the besm can be neglecied. This approach
exploits the properties of space and fime dilation and contraction associaked with the Lorentz tansformation. As
shown im [1], the mtio of loogest to shottest space and time scales of 2 gystem of bao or more companents crogsing al
relativistic vclocities is mot invartant under such a mansformation {a lascr crosaing a plasma 15 just such & reladviztic
crossing). Since the nomber of computer operations {e.g.. lime sieps), far simulations based on formulatioms from frst
principles, is proportional to the ratio of the langest to zhortest ime beale of interest, it follows that soch simulations
will eventually have different computer Tuatimes, vet eqoivalent sceuracy, dopending solely vpon the chaice of feame
of reference.

The procedure appears straightforward: identify the frame of reference which will minimize the range of space
and/or time teales and parform the caleulation in this Frame. However, zeveral practical complications arise. First,
the input and cwtput data sve wsnatly known from, or compared o, experimental data. Thus, calculating in & frame
other than the labocatory entails transformrations of the data between the calculation frame and the laboratory frame,
Second, while the fupdamental equations of electrodynamics and particle modon are written in a covariant form, the
numerical algorithms that are derived {rom them may not retain this property, and calculations in frames maving at
different velocities may not be successfully conducted with the use of the cxact same algorithms. For example, it
waz shown in [20] that calculating the prepagation of ulra-relativistic charged particle beams in an accelerator using
standard Particle-Tn-Call techniques lead to darpe numerical smmors, which were fixed by developing a new particle
pusher. The modeling of a lager plaswia accelerator {LPA) stage in a4 boosted frame involves the fully electromagnetic
madeling of a plasma propagating at near the speed of light, for which Numerical Cerenkov [21, 22] is a pofential
1zsue, Third, electrmagoetic caloulations thal mclude wave propagation will inclnde waves propagating forward and
backward in any direciion. For a frame of reference moving m the divection of the aceelerated beam {or equivalently
the wake of the laser), waves emitted by the plasma in the forward direcion expand while the ones emitted in the
bacioward direction comract, following the propemties of the Lorentz Iransformation. I¥ one is to resobve both forward
and backward propagating waves eminted from the plazma, there is no gain in selecling a frams different fron the
Labwratoey frame. However, the physice of interest for a laser waksfizld is the laser doving the wake, the wake, and
the accelerated beam. Backscatter is weak in the shoti-polse vegime, and does not interact a8 srongly with the bear
as do the forward propagating waves which stay in phese for a long period, It is thus aften assumed that the backward
propagating waves can be neglected jn the modeling of LPA stages. The accuracy of this assumption is shown by
comparison between explicil codes which include both forward and backward waves and envelope or quasistanic
codes which neglect backward waves [ 10, 19, 23]

After the idea and basic staling for performing simulations of LPA in & Lorentz boosted frame were pablished
it [1], there bave bean several reponts of the application of the techuique 0 various regimes of LPA [13, 24, 25, 26,
11, 7, 28). Speedups varying betwesn several to a few thousands were reported with varjons levels of securacy in
amreement between stmulations performed in g Lorenlz boosted frames and im a labortory frame. High-frequency
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instabilities were reported to develop in 2D or 3D caleulations, thet were liraiting the velocity of the boosted frame
and G the attainable speedup [29, 27, 28].

In thie paper, we present numerical techniques that were implemenied iv the Panicle-In-Cell code Warp [20]
far mitigating the wumerical Cerenkov insabilicy, including a solver with mnable coefficients, and show that these
techniques ere effective for suppressing the high frequency instabilicy chserved in boosted frame simulations. A
detailad shudy of the sapplication of these tachniques to the simulations of diwncealed LPA stages veveals that choosing
the frame of e wekeficld as the reference frame allows for mors aggressive application of the standard rechniques
mitigating numerical Cerenkov, than s possible in laboratary frame simulations, I it shown tiat the instability that
develops with high-boost frames is well controlled, allowing for the ficst time 2D and 3E) simulations of LPA in the
wakefield frame, for 10D GeV and | TeV class siages, achieving the maximum theoretical speadups of over 10F and
10F respectively.

This paper is crganized as follows, The theoretical speedup sxpected for performing the modeling of 2 LPA stage
in a boosked frame 18 derved in Section 2. Section 3 addresses the isspe of input and output of data in 2 beosted frame.
High frequency instahiliry issues and remedies sre presepted in Section 4. Thess techniques enable securate modzling
of (.1 Qe¥-1 TeV LPA stages. Stage modeling results are presented in section 5, and ohserved spesdup is contrasted
{0 the theotetical speedup of section 2.

2. Theoreticol speednp dependency with the frame hyost

The obrainable speedup iz derived a: an exteneion of the formula that was derived in [1], taking in addidon infp
accourk the groop velocity of the laser as it traverses the plasnta. In [i]. the lager was assumed to propagate at the
velocity of light in vecuum ducing the enlite process, which is a good approximaion when the relativistic factor of
1he frama boost ¥ is small compared to the relativisic factor of the laser wake ¥, in the plasma. The expression is
generalized bere to higher values of ¥, for which the acmal group velacity of the wake in the plasma must be (aken
inbo pecount, We shall show that for & 10 Ge¥ class LPA stage, the maxitnbim attainable speedup is abave Four crders
of magnimde.

Assuming that the simulaton box ig a fixed number of plasma peciods dong, which implies the use (which i3
standard) of a moving window fllowing e wake and accelerated beaim, the speedup iz given by the ratio of the time
taken by the Jaser pulse and the plasma by cross each other, divided by the shorlest time scale of interest, that is the
lazer period. Assuming for simplicicy that the walee prapagates at the groop velocity of plane waves in 2 uniform
plasma of density k., the group velocity of the wake is given by

—1/%
Vief€ = By =[1 *ﬁ] m

where i, = fiR.e2}f{€ym,) 33 the plasma frequency, w = 2o/l is the laser Fequency, & is the permittvity of
vacuum, € is ine speed of light in vacuum. and ¢ and m, are respectively the charge and mass of the electron,

in the simulations presented herein, the runs &re stopped when the last electzon beam macro-particle exils the
plasma, and a measure of the total dme of the simuladon {s given by

T L+yd,

. — v

where A, = 2acfiv, is the wake wavelength, L is the plasma length, v, and v, = fo¢ are respectively the velocity

of the wake and of the plasima relative to the frame of reference, and 5 s an adjustable parameter for taking inta

agcount die fraction of the wakc which caiked the plasma at fhe end of the simulakion, The aurncrical cost R, scales as

the ratio of the wdal Gme Lo the shortest iimescale of mitepest, which is the inverse of the laser frequency, and i3 thus
given by

(2

(3

e
1
I
i
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In the Iaboratory, ¥ = [ and the expression simplifes to

Te (L + ??flp}
B, = i )
In & framme mooving ar fe, the quantities becoms
o= Ll - e (5}
L = Liy (6}
A = yll+fd {7
g = Bu-Dl -85 £
v, o= e (L))
. L'+ iy
™ = - {10
e (L +nd;)
5T FTwmenr o

where ¥ = 1/ fL — &2,

The eapected speedup from pecforming e siulation in a boosted frame is given by the ratio of Ky, and 8]

B (V+B{L4niy)
R (-A8 L+,
Agzuming that ¥ << 44, and that &, = | (which is 2 valid approximarien for most praciical cases of intzrest), this
EXPression is consistent with the exprassion derived in [1] for the LPA case which states that B} = a5,/ (1 + 8) with
a={1 -2+ L)/l + /L), where ! is the lager length which iz generally proportional to g, and § = R;/R;.
The Imear theory predicts tha for the Intense Jasers (a51) typically vsed for acceleretion, the Taser depletes
is energy over approximately the same length Ly = A,/24% over which the particles dephase from the wake [2).
Acceleration is compromized beyond Ly and in praciice, the plasmia length is propoctional 1o the dephasing length, 6.
L = £, Jn mastcases, 35 > |, which allows the approximations £, = 1- .Ffi‘..-lf,, and 2= FF2A8 = Sy 4,12 =
nAp, 50 that Eq.(12) becones

{12}

&Y%
S=(+p° 13
B e T PP @aZ H
For low valaes of v, e when ¢ << ¥,,, B0.(13} redoces to
Eocay, =1+ AP (143

Conversely, if v — =, Eq{13) becomoes

4
Finally, ir: the frame of the wake, i.e. whan ¥ = ¥, assuming that 5, = 1, Bq.(13) gives

Y (16)

Srmwe * 17 ThiE

Since » and £ are of order unity. and the practical regimes of most interest satisfy 92 > 1, the speedup that is
obtained by using the frame of the waks will be near the maximyern obtainatde value given by Eq.(15),

Mot that without the nse of a moving window, the relanvisuc affects that are ar play in the ime domain would
also be at play in the spatial domain, as shown in [1), and the 9 scaling would fransform to ¥*. In the frame of the
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wake, therz iz no need of the moving window, thug gimplifying the procedure, while in a frame traveling faster then
the wake in the laboratory, 2 ooving window propagating in the backward diccction is noeded. Howevet, the scaling
shows thal there would be very litle gain in doing the latter,

2.1 Estimated speedup for 8. 1- 100 GeV siapes

Formula {13) is used to estimate the speedup for the calculaticns of 100 MeV, 1 GeV, 10 GeV and 100 GeV class
stages, assuming 3 laser wavelength A = {.%um. Using pararneters and scaling laws from [1B], the cosmesponding
initial plasma densities &, ars respectively 100, 10'%ex, 10" o0 imd 1049, while the plasma lengths L are 1.5 mm,
4.74 cm, 1.5 m, and 474 m, with £ = 1683 For these values, the wake wavelengths J, are respechively 10.62:,
Fdpem, 106,00, 334w, and relativistic factors v, are 13,2, 41.7, 132 and 417, In the sumwlations presented in this
popet, the beam s injected near the énd of the wake perded (fivst "bucket™). In firsl approfimeation, the beamn has
propagated through shout half a wakee period to reach full acceleration, apd we set i = (L3, For a beam injecied inte
the #* bucket, 5 would be set to n - 1/2. [f posittons were considered, they woukd bz injected half a wake perind
ghead of the lacation of the electrons injection position for a given period, and one would have 7 = »# — 1. For the
parsmeters considered here, L = 45792, and (15) gives S, = 245,

Speedup

10— 3% 7 a6 ¢ 46
) 10 100 1000
¥

Phgane 12 Speetup versus retarh ke Tactor of me vooaed Prame Eooih BO.00 5 T 300 Mey - (00 Oey LPA chass smges,

The speedup versus the relativistic factor of the bocated frame 4 is plotted in Fig. 1. As expected, For low valoss
of ¥, the speadup scales 5 ([4), and agymptoles 1o a velue slightly tower than 232 for Jarge values of v. It is of interes!
o note that the qualitative behavior iz identical vo the cne obtaned in [1] (see Fig, 1 and accompanying analysis) in
the analysis of the crossing of two rigid ideptical beans, confieming the generality of the generic aralysis presented
in [11. For a 100 Ge ¥ class stape, the maximim estimaied speedup is as kuge as 300,000,

3. Input and sxtput to and Eroro & hoosted frame sinwlation

This section describres the procedures that bave been impleroented in e Particke-In-Cell framework Warp [30] to
handle the input and oaotpul of data between the: frame of calculation and e lsbaravery frame, Simolapsity of events
between o frames is valid only for a plane that is perpendicular vo the celative moton of the frame. As g resall, the
Inpulionipyt processes involve the inpat of data (particlas or fields) Brongh a plane, a5 well a3 ouipot fhoough a series
of planes, all of which are perpendicular to the direction of the elative velocity between the frame of caleulation and
the ¢ther frame of choice.



31 Inmput
3. 11 Particles

Particles are launched thaough a planse using a technique which applies o many calculations in & beosted frame, in-
chuding LPA, and s illustrated using the case of a positively charged particle beam propagating thsough a background
of cold elections in i sssumed continnous ansverse focnzing aystens, 1eading 1o a srowing transverse instability [1).
In the laboratory frame, the electron background ik initially at rest and & moving window iz used to follow the bearn
progresson. Tradilionally, ke beam mactoparticles ace initialized all at omee in the window, while back ground elec-
tron macroparticles ars created cobtmzonsly in frent of the beam on a plane thal i3 petpendicular to the beam velocity,
In 5 feame moving at some fraction of the beam velocity in the laboratory frame, the beam inidal conditions al & given
dme in the calcularion frame are geaerally unknown and one must initialize the beam diferenfly, However, it can be
taken advaniage of the fact tyar the beam initisl conditions are often known for a given plase in the laboraoay, either
directly, or via simple calcalation or projection from the conditions ot a given dme. Given the position and velocity
5%, 2, ¥a: Vo v2) for 2ach beam macroparicle at time £ = 0 for a beam moving 2t the average velogity vp = Syc (where
¢ i3 he speed of light) in the |zboratory, and vsing the standard synchronization {x = 7' = Qati = ¢ = 0) berween the
laboratory and the calculation frames, the procedure for transforming the beam quantibies for injaction m a boosted
frame nvoving at velocity Ae in the laborarory 34 as follows {ihe supesseript” relates to quantities Yivown in the boosted
frame while the superseript * relatas to quantines that are know at a given Jongitudinal position z* bet different times
of arthval):

1, project positions al 77 = 0 assuming ballistic propagation

Fo= -3y {17
o= ox-wd (18)
Yo pewt {19}
=10 {20}

the velorty components being lefi onchanged,
Z. apply Lorentz mansformation from laboratory frame i boosted frame

In = -T" {2[}
= = 5 {22)
o= 23
&= ypar @9
Yo S 25
= T - )
o= ——v;— {26)
YU (L -
v - fie

W= = a7
£ 1— g e

where ¥ = 11 4f1 = AZ, With the knowledge of the time at which each beam macroparticle croskes the plane into
consideration, one cam irgect each bearn marcoparticls in the simulation af the appropriate location and Hme.

3. symchronize macroparticles in boosted frame, oblaining their positions at a fixed £{= 0} which is before any
partiche is injected

o= - {28)

Thiz additicnal step is weeded for seding the tlecivostatic or cleciromagnetic fields o the plane of injeclion.
In a Panticle-In-Cell code, the three-dimensional felds are caloulated by solving the Maxwell equations (or
static approximetion like Poisson, Darwin or other [201) on a grid on which the soorce remn is obtained from
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the macropatticles disribution. This requires peneération of a three-dimenslodal reprisentation of the beam
distribution of macroparticles at a given time before they czoss the injection plane at 2™ . This is accomplished
by expanding the beam disttibution longitudinally such that all macraparticles (20 far known at diffeent times
of amrival #t the injection planc} are synchuonized to the game time in the boosted frame. To Leep the beam
shape constanl, the particles are "frozen™ until they cross that plane: the three velocity components and the
two posilion componcnts perpendicular 1o the boosled frame velocity ace fised, while lhe remaining position
cornmponent is advanced a1 the average beam velooty, Ag garticles cross the plane of injection, they become
regular "active” panicles with firll 6-D dynamics.

= ({m?}

Fligure 2: {rop) Snapuhod of o porticlke beom “Trozen' (grey sphenes) and “setive™ {colored spheres) macropanicles rversmp tie Inpection plase red
rectangle). {botom) Snapsbor of the beam macreparticles: (eoloved spheres) prsiog tnough e backpround of clectmns {dark beown strearnlines)
am the diapiostic stetions (red fectngles), The clechsm, the npeton plane and te disgnostc stations s Bxed o the Isbotsbory plane, and ars
thius coomierpropagating wo the bram s 2 bootted frame.

Figure 2 (top) shows & snapshol of a beam that has passed partly through the injection plane. As the frozen beam
macroparticles pass through the infection plane (which moves opposite 1 the beam in the boosied frame), they are
comverted 1o Yactve” macroparticles. The charge o curcent density is accomulated from the active and the frozen
particles, thus ensoriag that the belds al the plane of injesion are congighent.

J.L2 Laser
Similarly & the particle beam, the laser i3 ajected thaough a plane perpendicalar to the akis of propagation of the
Laser (by defanle 2} The elecmic ficld £, that is to be emitted is given by the fonmula

E,(x.00= Eof {x,y. am[wr + ¢{x, 3. 0Y) (29}
where Fy is the amplitade of the laser electric field, £z, v,1) is the laser envelope, o is the Laser frequency, ¢ (x, ¥, e}
35 & phast Junction 0 aecownt for Tocusing, deforasing or injestion &t sm angle, apd 71 timee, By defauiy, e lascr
envelope iz 4 three dimensional pavssian of te form

Flx,y 1) = AR PP A {30)

where oy, o5 and o arc the dimensions of the Lassr pulse; of it can be delingd arbitvacily by the wset at uotime. IF
iz y, o) = L, the Tager is injected at & waist and parallel to the axis 7.
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If, for convenisnce, the micton plabe is movidg al constant Velocity fec, e foriula is modifed oo take the
Doppler effect on frequency and amplinade into account and becomes

E (e 0=(1- g (aysin((l - Sl + $lx0a] (31)

The injection of B lazer of frequency @ is considesed for & simutation neing a boosied frame moving at fic with

respect to the laboratory. Assuming that the laser is injected at a plane that is fixed in the laboratory, and thus nwoving
at &, = —Zin the boosted frame, the injection io the boosted frame is given by

Ey (¥, Y. 1) (1 —BIEL (2, ¥ Chsin[(L - F)0'd +¢(x. ¥, w'}] (32)
(Enfy) Fix. ¥ . Osin[ed’ fr+ @ ix.¥. 0')] {333

since E%,."En. =l fur = 1f{1+ B)y.

The electric field is then convertzd inte corcents that et injected via two dual 2-D ammays of macro-particles, with
one positve and one pegative macro-particle per cell in the plane of injection, whvoze wreights md molion e governed
by E, (x', ¥, ¢'). Injecting using thece dual arvays of macroparticles offer the advantages of sutomaticafly including
the longitudingl component which arise from emitting into a boosted frame, and to vesify the discrete Ganss law
thanks to the wse of the Ecitkepoy clorent deposition scheme [311.

The technigque implemented in Warp presents several advantage gver other procedures that have besn proposed
cisewhers [13, 28], In [28], the lazer beam is indtialized entirely in the compatational box, leading po Larger boxes
transversely in & boosted frame. a6 the Rayleigh lengih of the laser shomens and die overall taser pulse radivg Tises,
evtatually offsening the benefits of the boosted frame. The transverse broadening of the box is avoided in [13] at the
cost of a more complicated ingection scheme, requiring to Tannck the lager from all bue one faces of the simmlation
box. The mesbod presented hers avoids e caveat of the browdening and retains simplicity with & stardard injoction
teshnique through ons plane.

35 Catpal

Some quantities, e.g. charge, ave Lorentz imvariant, while ofhers, like dimensicns parpendicalar o the boost
velocity, are the same in the Tabocatocy Trame. Those quantities are thus readily available from slandard diagnostics
in the boosted frame calculatons. Cuantites which do not fall in this caregory are recorded at a pumber of regulany
spaced “stations”, immnobile in the laborstory frame, at a succession of time intervals @ record data history, or averaged
aver time. A visnal sxample is given on Fig, 2 (bottoim). Since the space-tine Yocations of the dingnostic grids in the
laboratory frame genemilly do not coincide with the space-fime positions of the mactoparticles axd grid nodes used jor
the caleniation tn 3 boosted feame, some interpolation is perfotmed st ontime during the data collection process. As
a complement or ae altermative, selected particle or field quandties are domped at regulas interval for post-processing,
The choice of the metheds depends on the requirements of the diagivostics and particrlar implenentations.

4. High Irequency instability and Numerical Cerenkov

Az reportedd in [27] end [28], for simulations using a boosted frame at ¥ = 10 — 20 (depending on parameters),
a fast prowing short wavelength instability was observed developing at the front of the plasma (see Fig. 3). The
presence and prowih rate of the instability was observed (0 be very sensitive (o the resolution {slower growth rale at
higher resolation), choice of fizld solver, and to the ancunt of damping of high frequencies and smoothing of short
wavelengihs. The instability is always propagating at some angle from the longituding! axiz, ard is observed in 2D
and 3D tung but was nevet observed 1o any of the 10 runes petformed by the sothors, When mmodeling an LPA sempin
a relativistically boosted frame, the background plasma is traveling near the speed of light and il has begn conjectured
[23] that he oboerved instability might be caused by numerical Cerenkov, 'We investigats 1 this paper whelher the
instability than 15 observed In boosted frame stmulations of LPA is Indeed of numerical Cetenkoy tppe and If the cures
ained at mitigating numerical Cerenkov are effective.

Diye to gpatial and time digeretization of the Maxweell equatioiz, numerical Light waves may mavel faster or slkower
on the computational rid than the newal speed of light in vacunm <, with (he megnituds of the effect being, larger al
short wavelength, where dizeretizalion ervors are the larpest. When the numernical speed is leswer than c, it is possible
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Figure: 3: Snapshoe of 0 surface piot of the kengibudinal Baid from a 2- 12D anwlabon of a il gcale 1032Y LPA in & boosced (rame o » = 130
(elevahon 13 proporusnal bo the o pietede of the elstine febd), The Incer ic propugatng o ket o nighi aed the plosms from dpht o lefl. A fas
growing dhort wavelength ingtabakiny 15 deve] gpuig b the: frome of dhe plasma,

for fast mpcro-paticles to ravel faster than the wave modes, leading o epamenical Cerenloow effects that may vesull
in instabilities [21, 22, 32, 33, 34]. The effect was studied analytcally and numerically in detril for one-dimensional
gyatems in [32, 33]. Several solulions wers proposed: smoothing the current deposiled by the macro-particles [21, 32],
damping the electromagneiic fzld [34, 35, 38], solving the Maxwell equations in Fourisr space [22], or using & fi<ld
solver with 4 larger stemcil to provide lower numenical dispersion [34].

Several of lhe ahovemenGoned echmigees to mitigate numerical Cerenkoy and high frequency ermors have been
mplemented in Warp. All the simulations presented in this paper employed cubic splines for curnent deposition and
electromagnetic fome gathering between the macro-particles and the grid [37], whose beneficial effects on standard
LPA PIC simmimions have been demonstrated n [38]. In addition, & Maxwedl solver with mrable coeficiems was
implemented, a5 well as a damping scheme, and filteting of the deposited cutrent and gathersd electromagnetic fields,
which are described in this secton. The use of Pourier based Maxwell solvers 1= not considered in this paper.

4.1, Wideband fowpass digital f[Heering

It iz common practice o apply digital fliering to the charge or corrent denzity in Particle-In-Cell simulations, for
smoothing or compensatdon purpose [47], The most commeoaly wed flter s the ihree points filker

§p1 +
o = b+ -y I %)
where 4 1z the Gltered guantity. Thiz flter is called a binomial filter when o = 0.5, Assorming ¢ = 2™ and
¢ = gla, k)™, where g i the filter gain, which is function of the Alering coefficient & wd the wavenumber &, we
find from {34} that

gl k) = a+{]—a)cos{kix) (33)
{kéx)
= 1=l -e) == +0(') (36)

For it successive applications of filters of coefficients ¢ ...ay, the total amenvztion G is given by

G = ﬁg(-:t.,k‘: (N

~ 1- [n -3 a,] B 1 o) (3)

=1

ey =n— X0 a then G = | + O (k*), providing a sharper cutoff in & space. Such step is called a campensation
step [47]. Far the bilinear filler (& = 1/2), the compensabon factoe iz o, = 2 — 1/2 = 3/ For a succession of o
applications of the bilincar factor, itis @, = #/2 + 1. The gain vwersus wavclength is plotied 0 Fig. 4 for the bilincar
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filter without compensation (G = 2{1/2Z, k), with compensation (G = g(1 /2. k) g{3{2, k). and foor n-pass Dilinear
fiiters with compexsation: (G = g{1/2, k¥ - g(3/2,.E)) focn = 4, 20, 50 and 30

The bilinear filter provides complete suppressicn of the signal ac the grid Nyquist wavelength (twice the grid cell
size). Suppression of the signal ar integers of the Nyquisi wavelengeh can be obtained by using a stride £ in che filter

¢;'-: + ‘iﬂ'ﬁ-s

¢) =ad;+{l-a)-"

39
for which the gain is given by

o a k) = a+ (1 —aleos (shix) (40
(skd)?
2

The gain is ploted in Fig. 5 (top) for four passes bilinear filtess with compensation {G = 2(s, 1f2, k) - 25,372, 4))
for srides s=1 1o 4. For a given stide, the gain is given by (he gain of the bilinear filter shifted in K space, with the
7ok 2 = 0 shifted from A = 2/6x W 4 = 25/8x, with additional poles, & given by

2 L —{1~a) +0(%) {41)

[y S— (&-‘:—I) (raod 28 {42)

The resulling filter iz pass band between the poles, but since the poles are spresd at diffarent inreger values in k space,
a wide band low pass flker can be comsmuctéd by combiniog filiers al different sirides. Examples are given in Fig, 3
(hamom’ for combinations of the ler with siride 1 o4,

The combined filers with stides 2, 3 and 4 have geady squivalent fall-offs in gain (o Uiear scale) to the 20, 50
and 80 poaascs of the bilincar filter (302 Fig, &) Yer, the filiers with stoide need vespectively 10, 15 and 15 passes of
a three-point filier while the n-pass bilinear filer psed respectively 21, 51 and Bi passes, giving gains of respectively
2.1, 3.4 and 5.4 in number of operations in favor of vhe filters with siride.
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4.2, Tumable solver

In [39] and [40], Cole introduced an implementation of the source-Free Marwell's wave equations for nartow-
band applications bazed on non-stendard finite—differences {MEFLY)L In [41]. Kaddeainen et 2l adapted i1 for wideband
applications. At the Courant {imit For the time siap and for a given set of parameters, the stencil proposed in [41]
haz no numwerical dispersion along the priccipal axes, providad that the cell size is the sames along esch dimension
{i.e. cubic cells in D). The solver from [41] was modified to be cansistent with the Farticle-In-Cail methadology and
inmplememed in the code Warp, with the ability given tothe wser of setiing ihe solver adjustable coeflicients, providing
muwability of e numesrical proparties of the solver to better fit the requirsments of 2 particutar application.

The "Cole-Karkkainpen''s solver [41] uses a non-standard finite difference formulation {extended stencil} of the
Mlaxwell-Ampers equaton. For implemsntation inte @ Particlz-1n-Cell code, the formuolation must intreduce the
source term inte Cole-Karkkairten's sowrce free formuladon in a consistent manmwr. However, midifying the NSFD
formulation of the Maxwell- Ampere equation so that it includes the scuree teom in a way that is consistent wih the cor-
rent deposition scheme t5 chalkenging. To circumvent this peoblem, Warp implementation departs from Barkkainen's
by applying dic colarged stencil on the Maxwell-Faraday cquations, which decs not contain any source term but
is formally equivalent 10 the source-free Maxwell-Ampere equation, Consequently, in Warp's impleqientation, the
discretized Maiwell-Ampere equation is the same as in the Yee scheme, and the discretized Maxwell’s equations
read:

AB = -V xE {43
AE = c’?xﬁ-i (44}
VE = g . £45)
v-B = 0 {46)

where gy is the peomitiviry of vacuuim, and Eq. 45 abd 46 nol befog solved expliciily bt verfied via appropriate
initial conditions and cusrent deposition procedurs, The differential operators are defined as
¥ o= AR+AF+AZ a7
v AX+AT+HALR (48)

the fAnite differences and sorms oparators being

Gr_l'l"lﬂ_GElT‘ﬂ
ﬁfﬂ:{jﬁ = &?_"“; £49)
e A I
A, G]pm - :+1,flr,;,kJI 112, ik (500
Ar = {a+ps)psiia; (51)
with
816 = Oliaan+ S8
LLE TP X5 P {52}
8361 = Fayzann YOl imean
LT FRY. PR LE . (53

The quantdry £ is 4 sample vecior component, 57 and Sx are respectively the fime step and the grid cell size along
x, while @, £ and  are cotstml scalars verifying o+ 48 + 4y = 1. The operators along yand 7, Le. A, AL AT AL 5L
51, 8%, and 5%, are cbtaived by circular permutation of e indices.
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In 20, azsuming the plane (x, z), the enlarged finlte operators simplify

A, = [e+psl)a, (54)
S0 = Olpet Ol (33

An extension of this algocithm for non-cubic cells provided by Cowan m [4.3] is noi considered in this paper. How-
ever, all considerations given hére for the solver implemented in Warp apply readily to die solver developed by Cowan,

4.2.1. Numerical dispersion
The dispersron relation of the solver is given by

X v by NPT 1 ka2
sin 88y fsin sin sin 3

(] - o5 va B | e &

with
C. = a+28o + )+ dyeun (571
C, = a+28c +o)+dyec (38)
C, o= @+ o) A (¥

mid

¢, = cos{k.d. (60)
6 = cos{hd) {61)
gy = Cm{i’:ﬁzj fﬁ:}

The Courant-Friedeachs-Lewy condinon (CFL) s given by

oft, < min]dx, v Az,

1/ .J(ar = dv)max [x, F Ry By b By By h x;].
1/ i — 48+ 4 s + 1y i) (63)

where &, = 1/627, &, = L)y and &, = 17622,

Agguming cubic cells {(§x = 8y = §7), the coefficients given in [41] {o = T2, § = 1/12 and 3 = 1/48) allow
off = &x, and thus no dispersion along the principal axes,

It is of intarest (o nole that {56} can be rewritten

R 1
(] it g2 2 ep(h3 0 240 207 (200 o

with 5, = sin (&,6,/2), 3, = sin(,8,/2). 5; = sin(,6,/2), F = ~8 = 16y and " = 43y, for which the cocfiicients
from {41} 1ake the pice valves & = —1and v = 1.

Sels of possible coefficients and the comesponding CFL condition, assuming cubic cells, are given in Table |- The
numerical dispersion using thooe coefficients are plotted in figure 7 along the principal axes and diagonals for cubic
cells (fx = &y = dz) and contrasted with the ot of the Yee solver (all wken at cach solver™s CFL time sep Limit). Al
the CFL limit, the Yee algorithm offers oo numerical dspersion along the 3D diagonal, but relatively lasge nunverical
dispersion at the Nyquist frequency along the main anes. Conversely, the Cole-KarkEainen solver (CK) offers nc
numerical dispersion along the main axes but signibesnt dGapersion along the diagenals. The CE solver also allews

14
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148 | 196 | —1/48| o 37160
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Table ;. Lizt of corfficheniy

Jarger time steps than the Yee solver by alraost & Eactor of two n 3D, The solver labeled "CE2™ offers numerical
dispersion fat 3s jatermediate berween the Yee solver and the CK solver along the main axes and the 31 diagonal, bat
slightly degraded along the 23 diagousal, Conversaly, while solver CK3 alsa offers intesmediate numerical dispersion
slong the main axes and Wie 3D diagonal, it offers 00 numerical dispersion dong the 20 diagonal. Solver CK4
umproves slightly the numencal dispecsion along the main axes over CK2 and CE2 al the expense of the dispersion
along the disgonals. Pigally, CKS offers the highest level of isotmopy. The CTL time sieps of golvers CK2, 3, 4 and
5 are intermediste between the Yes md the CK CFL time steps. This provides solvers with a range of numernical
digpersion aracng Which fome may e mors favorshlz with regand to e midgaton of nomerical instabilites for a
given: application.

To reduce mumerdical dispaesion o 1ts Towest leval, il 15 desmable lo operate the CE solver as close a3 possible to
the CFL limit cfi = &x. Howevcr, an instability {other than numerical Corenkov) arises at the Nyquist frequency io
such a casze, The analysis is given in 1D in Appendix 1, as well as its mitigation using dighal filtering. Since for the
CK solver, the CFL limit is independent of dimensionality, the analysis and miligation apply readily to 2D and 3D
simolations,

Por absorplicn of suigoing Waves at the computationa] box boundaries, the exterston of the sohrer to a Perfecdy
Matched Layer [44] is given in Appendix IT.
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4.2.2. Current deposition and Gauss' Low

In most applications, it i5 sssential to prevent accomulaions of enors to the discretized Gauss™ Law, This is
accomplished by providing a method for depositing the curvent frotn the particles to the grid which is compatible with
the discretized Gauss’ Law, or by providing 2 mechanism for "divergence clegning” [47, 48, 49, 50]. For the former,
echemes which allow a deposition of the curvent that iz exacl when combined with the Yee solver is gives in [51] for
linear form factors and in [21) for higher ordet Torm Factors. Since the dlscretized Gauss' Law and Maxwell-Faraday
eqlation tre the same in our implementation ag in the Yee solver, charge conservation it readily verified using the
current depogition procadures frotn [51] and [31), and this was verified nomerically. Hence divergence cleaning is not
NEOEASATY.

4.3, Priedmon adinstable damping

The wnzble demping scheme developed by Prhedroan {36] was shown 1o be the most poen practical mathod Tor
mitigating the numerical Cerenkoov instability in [34], among the selected methods that wers considered. I is readily
applicable to the solver presented above by moditying (43) o

Bﬂujﬂ = BJIHJ'E T [l + ;]E’HI _ %EH - (é - E]Eﬂ-t] (65}
with 5 e
-1 _ - il L
£ = (1 - 5 )Er 4 5B (66)
where D = & = 1 is the damping factor, The nitmetical dispersion becomes
, 1
sin 4t 2
= Fr 7
=) @
whers 2 ,
20 5o {gndd
F=1- %M{E'% {64}
and 1 5%! 2 ?
e . Y
T S-]I"I% S5 S 7
0 = (:';[—5_]r ] +C,[ % +c1[ = ] ‘ {69)
The CFL ie given by

(z+s
bt = olle a5 {1

whera &, is the critica] dme stepy of the aumerical scheme without damping (& = {1, a: given by {63}

The numerical dispersion of the Cole-Kakkainen-Friedman (CEF) solver (using the coefficients from the CK
solver in Table 1) iz plotted in fAgure 8 along the priscipal axis and disponals for cobic cells {dy = dy = 3z) and
contrazted with the one of the Yee-Fredman (YF} solver (both taken at the Courant time step limit). The armount
of phase emvor rises With the valoe of the damping parameter & {parily dus to he shightly more consmaining Hmit on
the critical time step). However, it was shown in [34] that the amount of damping provided by the YF solver was
sutficient 1o counteract the slight degradation of mumerical dispergion with yaising 4, vedocing the sumsrical Cerenkoy
effects o an acceprable level for s problem that was considered. The damping & very isolopls with the CKF
solver but not with the YF ane. The YF impkmentation offers 4 higher leved of damping of the shorest wavelengihs
along the 3Dr diagonals, while the CKF offers more damping aloog the axes, and the amount of damping along te 2D
diagenals arc similat, [n svenmacy, the YF implementation delivers respectively the highesiflowest level of damping in
the direction of lowestfhiphest numedcal dispersion, while the CEF lmplementasion dellvers 2 proportionally ughes
level of dispersion than the YF implementation along the direction of highest mumerical dispersion. Thus it may be
expectsd that the CEF implementation will be more efficient in reducing tumerical Cerenkov effeots,
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£, Application i the modeling of laser wakefield acrelerntion

This scotion prescnts applications of the methods to the modeling of 10 GeV LEA stapes at full scale in 2-1/20r
and 3D, which has not been done fully self-consistently with other methods. Ithas been shown that meny parameters
of high enerpy LPA stages can be sccurately simolated ar reduced cost by sitnulating stages of lower energy gain, with
higher density and shorter aceeleration distance, by scaling the physical quantities relative o the plasma wavelength,
and thiz bas been applied 1o design of 10 GeY LEPA stapes [18, 19]. The number of oscillations of a mismatched laser
pulse in the plasma channel however depends on stage eneryy and does not scale, thoagh this effect is minimized for
8 chanmel goided slage as consaderad in [ 13, 19]. The humber of betatron ogeillations of the wapped elecwon bunch
will also depend on the stage cocigy, and may affect quantitics like the emittance of the beam, For these reasons, and
te prove validity of scaled designs of other parameters, it i necessary to perform full scale simalations, which ig only
passible by wsing redeced models or simlations in the boested feame.

As a benchmarking exercize, we first pecform scakd simulations similar tor the ones performed m [13], at 2
density of #. = 10" cin™’, using various values of the boosted frame relativistic factor ¥ o show the accuriey and
convergence of the technique. These stages were shown to efficiendy accelerate both electrons and positrons with low
encrgy spread, and e 2caled simulations predicied accelerstion of hundreds of pC o 10 Ge¥ energies using a 40
F lazer. The accuracy of the technigoe is evaluated by modeling scaled stages [18, 19] ac 0.1 GV, which allows for
a detailed comparigon of simulalions using a reference frame rangivg [rom the labaravory frame to the frame of the
wake. Excellent agreement iz oblained on wakefisld histories oo axis, beam average enecpy hiztory and momentum
spread af peak energy, with speedup over g hondred, in agreament with the thecretical estimates from Section 2. The
downscaled simulations are also used for an in-depth exploration of e effzcts of the methods presented in Sections 3
and 4, and evaluation of which techniques are requised to permit maxirouwm ¥ boost whike meintaining hizh accuracy.
We then apply the boosted frame technique to provide full scale simmlation of high efficiency guasilinear LPA stages
at higher energy, verifying the scaling laws jn the 10-Ce V-1 Te¥ range.

5.1, Scaled 10 Ge¥ stapes

The parameters were chosen o be close (though not identical} to the case whem £pL = 2 in [18] where &, is
the plasma wavermmber and L is the laser pulse length. In the cases considered in this paper, the beam is composed
of test particles only, with the gaal of testing the fidelity of the algorithm in modeling laser prepagation and wake
generationl, The reanlts from simulattons of LBA W a boosted frame where beam loading is pressnt will be prasentad
elsewhere. These simulations are scaled replicas of 10 GeV sges that would operate af acmal densities of 107 cm—?
(18, 19] and allow short mn tmes o permit effective bepchmarking bedween the algorithms. The main physical and
twmnerical parameters of the simulation are given in Table 2, Unless noted otherwise, in all the simnlations presenied
herein, the ficid iz gathered from the grid onto the panticies directy from the Yec mesh locations, 1.¢. using the *cnergy
Conzerving” procedore (see [47], chapler 10).

311 Using stemdord numericnl techniques

These Tuns were done using the standard Yes solver with no damping, and with the 4-pass stride-1 filter plus
compensation, similarky to the simolations reported in {§8]. Mo signs of detimental nurmerical instabilities were
observed at the resolulions reponted here with these sertings.

The approximate relativistic factor of the wake thar is formexd by the laser waveling in the plasma is given, ac-
cording to linear theory, by ¥, = 2mc/ e, where «, = y.e? fem, is the electron plasma (requency. For the given
paranvetas, ¥, & 132, Thus, Warp simulations were performed pging reference frames moving between ¢ = 1 (lab-
omtory fratne) and 13, For a boosted fiame associoted with & value of ¥ approaching 7, in the laboratery, the wake
is expected to eavel al kow velacity i this baosted frame, and the phivsics to appear somewtat diffsrent from the one
observed in the laboratory frame, in accordance to the properties of the Lorentz imnsformation. Figure & and 10 show
swrface renderings of the raneverse and Jongitedinal electric fieldg respectivaly, as the beam enrers it early stage of
acceleration by the plasma wzke, from a calculation in the Isboratory frame and another in the frame at ¥ = 13 The
two snapshots offer siokingly different viewe of (e same physical procesess: in the laboraiory fracme, the wake is flly
formed before the beam uvndergoes any significant acceleration and the imprint of the laser is clearly visible ahead of
the wrzke; while in the booated frame calcolation, the beam: is accelerated as the plasma wake develops, and the Taser
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Table 2: Listof parameters for scafed 1007 dass LA stage simuistion.

beam radius A 225 nm

beam kngth L 85 nm

beam Iransverse profik: exp-r*/8RE
beam longitudinal profile exp(—zrul

laser wavelength A 0.8 ;im

taser lengih (FWHM) L 10.08 pm
pormalized vector podential - ag 1

laset longitudinal profile ami{me/L)
plasma dengiry an axis B 10" ctn?
plasma lmgitudmal profitc Hak

rlaz=ma kogth L 1.5 mm

plasma entrance ramp profik half sinus
plasma entreance ramp length 4 pm

number of cells in x N 75

numbey of cells in z N, B8O {y=12%1691{y =1}
cell size in x ix (b5

cell size it 2 iz A2

Litees 22 & at CFL Limil
particle deposition order cubic

# of plasma particlesfcell 1 macro-e~ +1 macro-p*

iroprint i4 not visible on the snapshot. Close sxamination revesls thar the short spatial veriations which make the Jazer
impriat io front of the wake are (ransformed inte e vanations 1n the boosted frame of ¥ = 14

Hiatoriea of ihe perpendicular and longitedinal elecksic fields racorded at a number of stations o fixed localions in
the laboratary offer direct comparison berween the simulations in the laboratory frame £ = 1} and boosted frames a1
¥ = 2,5, 10and 13. Figure 11 and 12 show respectively the ranaverse and longinudinal electric fields collected at the
pogitions z = 0.3 mm aod £ = 145 mm {in he laboratory trame) on axis (x = ¥ = ). The agreement Is excellent and
confitms that despite the appacent differences Fram snapshols taken from simulaGons in diferent reference frames,
the same physics wae recovered. This is fumther confirmed by the plot of the average sceled beam energy Zain 25 2
function of position in the leborptory frane, and of relative longimding] momenpm dispersion gt peak enerzy (Fig,
13). The small dfferences observed on the mean beam energy histories and on the lohginadinal momentom spraad sre
attributed Lo a lack of convergence at the resolition that was choten. The beam wae [bunched with the same phase in
the 2- 1/2» and the 3D zimulations, resulting in lower epergy gain in 3D, doe o proportionally larger lazer depletion
effectz in 3D tham in 2- 12D,

The CPU time recorded as a fanction of dw average bearn position in the laboatory frame (Fig.  13-midde)
indicatas that the simulation ix the frame of ¥ = 13 took = 253 in 2-172D and = 150 5 ip 3D vepae = 5. 000 s in
2-11213 gnd = 20,000 5 inn 3D in the lobocatory frame, demonetrating speedops of = 200 jn 2-1/2D and = 1300 3D,
between calculadons in aboosted frame at ¥ = 13 and the laborawcy fTame.

All the sitnulations pressnied 50 far in this section were using the Yes sclver, for which the Coorant condition is
given by obr < {18+ +1/52%) " in 2D and et < (1/6x* + 17857 + 1/672) " in 3D whete 6t is the time stop and
&, oy and 0z are the computational grid cell sizes in v, y and 7. A& ¥ was varied, the ttansverse resolution was kept
conatant, while the longitadingl resolulion was kept at a constand fraction of the incident laser wavelength & = £,
guch that i a boosted frame, Sz = 24" = (1 + £ vd. Az o rezult, the speedup becomes, when using the Yea solver

2
Syan =S Szf1i62 + 1182 an
8 1762 + 17627
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Fagare O LColored surfiace rendening of the vawwernt aleowie feld from a1 20020 W sieovlaion of @ lawer wakefield sccelesatlon stage o de
laborarery Trome (tph and o bocied e o ¢ = 13 (bocom), with the beam (white) i i saly phess of acockerstion, The laser and tha basem ae
Fropaganmg fram loh wo right,

in 20 and

Sz ofliaaE + 115 4 1827
LY =5 7z
R S V1R /oy % 110 )

iw 3D where § is given by Eq. (13).

The speedup versus telativistic factor of the reference frame is plotted m Fig. 14, fromn (13), {71) and (72),
and contrasted with measured speedops from 1D, 2-1/21 and 30 Warp simolarions, confimming the scaling obtained
analytically.
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Figute LE Colored sirface rewdaiog of e ongitudinal 2becode feld Mo a 2- 120 Warp semobulon of 3 ke wakehiedd scoeleranot slope in the
laboraory Bmme {top) and & boosted frame aly = 13 {boro), with the beam (wiuee) io wa carly phase of stecddemtian. The kasex g e beam e

propagating froim 120w ot
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Figute 11: Higtory of manvers slatide bald ot the pocliiob = v = 0, £ = 03 mm and £ = 105 mm (e Dabosdory Irnne) for aimdatlong
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the labiratsry frame (v = 1) and boosegd ranes aly = 1, 5, 10and 13,
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507 Effect of firering, soiver with adinstable dispersion and damping

The: modelng of foll scals stages, which aliow for higher values of ¥ for the reference frame, is more prone to
the high frequency instability that was memtioned in a previous section, as we will show below. In anticipation of the
application of the method pressnted above b mitigate the 1nstability, simulations of the scaled stage were conducted
using the Yec solver with digital fileer S5(1:2:4} as desgribed above (Fig. 15), the Cole-Karkkainer solver (Fig. 163 or
the Yee-Friedman sclver (Fig. 17).

Smovthing with b wideband filter S{1:2:4) did pot produce significant degradations for the caleulauon in the
wake frame {y = 13) bot did otherwise. The caloolations with the Yee selver oud the Cole-Karkkainen solver gave
identical r2sults, validating our freplementation of the CK aolver. Degpite the more expensive siencil, the nin with the
CK solver was almost 40% faster, dbe to a time step larger by V2. Similarly to filtering, damping aggressively id
not degrade the vecnlt in the eange 10 < » = 13 but did significanty in the range 1 = ¢ < 5. Comparing the timings
with those of Fig. 13 (middle-left) shows thal the smoothing and the damping added less than a facior of twe of total
nusinge to the simolations.

Emw ceeeyml 3 y=138(1) BFRTCCE I qm2 oo ymS

S |2 —er ym]Q — yal3 -

S f - =10 Ry T

? — =13 T e - g 5(1 2:4) .

E& 4 ,d':'-j"-“ '22"':"--1‘& E : e

g , S T B ) BN - R T - [—

a i L5 __‘M mpmin =

F o : : N [ L S —— =

2 az 06 08 10 12 02 04 06 08 1.2
Mem baam position {m) #eon beam positar {rn]

Figure 15: { {befid Avernge scaled beamn energy galn and {right) CPU tinee, versis longitedinal positon in de laborarory frame from simoelstons
in e tabornory Trne {y = 1) md booseed franes o v = 1, 3, 10 md 13, veing the Yee solwer with digiral filtes 301240 (geey crons 15 isfereni:
Trom oun wdth ler SO0,

i
=]

=13 {Yee)

— =13 (K}

Mean beam energy gain {GeV)
B o

0z D.-ll D 1] 1.0 1.2 'IJI-Z U:ll U:E ﬂl-ﬂ- 1.0 1.2
Mean beam pnsitm (m} Mean beam position (m)

Figope 162 { (R} Avernge scaled beam encrgy gain and (right} TP fige, versua Jongifudinal positian in the laboralory Framne frer: simulations in
the labowatary frame ¢ = 1) and boosted frames 51 ¢ = 2. 3, 10 and 13, using she Cole-Karkkainen solver with filier 3010 (red curve iz relarence
form Cakealavion wilh Yee siiver and fltee SCTH.

Thise rezults lead o several cheervalions: {1} whale the 2rid dimensions and twmber of cells were choscn sach tha
square cells were oblained for v = 13, meaning a larger dispersian in the longitudinal divection with the Yee solver
than with the Cole-Karkkainen solver, both gave the game regult. This 1= significam singe for stmulations of LPA i
the laboratery frame reported in the litersure, the need 10 have nealy perfect nomencal dispersion in the Yongimdingl
direction Lmposes a constraint on the cell aspect ratio atd s on resolurion [45, 45]. This consttaint i3 temovéd whett
simulating in the frame of the wake &y = 13 = 4% (i) damping of kigh frequencies with the Yee Friedman solver
or wideband smoolbing of ghort wavelength have a negligible effect on sccuracy for simulations in the frame of the

ZhH



Em]u- 1 X =13 (0m0) I EEET R =2 e =5
L R =2 10— =10 — =13
B aann
8 | < B
g™ =10 : W o
BO— i e O T 4
% 4" - *_.i" e L
- a=1. & '||-'|.2 - A= -
§2' And +___.-d-1""'---- e
2 e
E D . — . . .
2 LI ] 0.8 oA 140 1.2 L () o8 08 1.0 12
Mean beam posftion {m) Mean beam position (m}

Figare i7: { (lofi) Average scaled beam energy pain amd dright) CFL3 time, versus bonginading posifon in the labomegry frame Mo simulsdens in
the laboraory ame &y = 1) aad boosted framez at y = 2,5, 10and 13, weing the Yee-Friedman solver with # = 1 {grey croes ie referencs from n
whth o dumping)

wakce, but degrade the accaraey very significantly for slower moving reference frames. The dependency of the effect of
damping and smoothing with 4 boost has two canses. Fiest, simulations with a boost ¥ = vy require fewer time steps
than simulations nsing a loswer value of . Thus, for & glven vatue of the damping coefficient 2, the Integrated avunt
of damping will be lower for the sinulations with ¥ = ... Second, as mentioned above in the discussion of the surface
renderings showen in Eig, 9 and 10, a large fraction of the shoit wavelength eonternt that is preseat in the ginwlations
m the laberatory frame iz mansformed inte time oscillafions o simulations in e wake frame. Hence, Glering short
wravelenpth has lese affect oo the physics when calenlating in the wake frame than when caleulating in the labocatory
frame; (iil) e cost of using even the most aggressive damping or smoothing is low, especially considering that the
sirmolations presented hers were using only two plasma macro-particles per cell.

In summary, calculadng in a boosted frame near the frame following the wake {v = 9,1 relaxes the constraint on
the nomerical dispersion in the direction of propagation of the Jaser (which is essential in simulations in the laberatory
feame), and allows for more apgressive danping of high freguencies and swoothing of short wavelengths than is
poszible in standard laboratery frune caloulatons.

5.2 Full zeafe M0 GeV class stages

As noted in f13], foll scale simulations using the Taboratory frame of 10 GeY stages o plasma densities of Lov
e are not practical on present computers in 20 and AD. At this density, the wake relativistic factor v,, 132, and
2- 12D and 3D simulations were done in boeostad frames op toy = 130

Mean beam anergy gain (Gev)
L1

‘ — ¥
- LTI YT Y S{I:E}
svsaree §{1:2:3)
21 T e 5{1:2:4)
iy v —— = 1
gtz 04 06 0B 10 12
Mean beam position (m)

Flpure 18: (K] Average beam eoefgy fain versan Ionginudinal posinion (n the laboraory [ramel, (rght) Fourker Transon of e 1onginedingd
elecksic fizkd at t=40 pt, averaged over whole domtain, fram 20 12 sitmaletons of a Rl s=ale 1GeY LPA in & bobsted frame a1 ¢ = LX), vsing the
Y solwer and wariows digital filier kemek. Square collz (6 = Az w 6_5pmd and the CFL fime step icdefdz = 1/ vE) wers used.
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520 Simularions in 2-1020

Fig. 13 shows the average beam energy gain versus longitndinal position and the averaged Fourier Transform of
the lonpimudinal electric ficld mken a1 1=440 ps, from 2D-1/2 simuolations of a full scale 10GeY LPA in a boosted frame
at ¥ = 13, wsing the Ve solver and vatious smoothing kernels. Fig. 19 shows the average beam energy gain versus
lengitedinal position from simultions in boosted frames at ¢ = 30, 0 and 130, All nuns gave the same beam enersy
hislory withio a few percents, and no sign of instability is detected in the Fourer wansform plot of the longitadinal
alectric fiekd. The average encrgy gain peaks arcund 8 GeV, in agreement with the scaled simulations (see Fig. 13}

3.2.2. Simulations in 3D

In 3D, all simulations at ¥ = 120 using the Yee solvet (using cubic cells and a time swep at the CFL limln) developed
the instability and doss of the besm, repardless of the amaunt of fillering or damping that has been ied. The faikire of
the: 3D zsimulations uszing the Yee solver molivatad uze of the Cole-Earklainen-Friedman {CEF) solves, with various
levels of fltering and damping. Data from 3D simulstions vsing the CKF solver amd warions smoothing kermels ame
plotied in Flg. 20, Stability iz abained when using a sufficient level of filtering. Damping is detrimental bo stability at
Tow levels (= O.1) but iz beneticial at » ogher lavel (@ = 0.5),

Mext, simulations using the solvey epefficients CK2-5 from Table 1 were performed, with the time step 2t a their
vespective CFL limit, The best esulls were cbtained using solvers CH2 and CK3, while CK4 and CTES did oot offer
substantial innprovement over the CK splver. The rezults from the nns using CE2 and CK3 were nearly identical and
heoce only thoses from CE2 are reported in Fig, 21, which show ety consistent beam energy gain histories, and no
sign of instability in the Fourier Teansform plot of the longitudinal electric field at Le=40 pa {cloger Luspechion revealed
that when wsing the lowest level of filering S(1), a il instability was developlng bur it was nit sfiecring the avetage
beam energy gain history). As shown on Fig, 22, the results at v = 30— §25 are in excellent agreement while the nm
st ¥ = 130 predicts a slightly lower energy gain, all within 10 percent of the maximom energy goin peedictad apound
5.7 GeV by the scaled simulations shown on Fig, 13 (lep-aght).

In summary, the full scale 6-7 GeV simulations wsiug the frame of the wake performed in thiz snbsection show:
(i} 2120 simulations using the Yee solver st the CFL limit (with square cells) were free of instabilicy, (i) 3D
siomalatione uging the CK solver developed moderately sirong instabilities that wers miligated uging roderate to high
levels of darnping andéor Aliering, the Latber being the most cffective; (i} 3D simulaticons wsing the CK2 {or CK3)
solver develaped very mild instabilites that were ratigated with a low level of Gliering.
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5.3 Effecis of numerical parameters on the observed instability
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Figare 23: Foorier Tramsform of tee longiedind eleciic Tield at (=30 ps, avaraged cuer plane on anis perpendicaler w bser polafzation, from
{efiy 30 and cright) 20177 sanadakions of & full seale 17HGeY LA in & booaked Trame &8 = 130, wslog the Yoo solvwar and warus siootbulg
keetiels, Thee sawve e sep at the 30 CEL lunit ot = 82/ ¥3 was uzed For boab slmulations.

The Fourier ransform of the longimdinal clecmic feld averaged over the whole domain at (=40 ps, from 3D
simulations osing the Yee solver, is given in Fig. 23 {lef}). [t is contrasted to the same dats @ken from 2-1/2D
simulations (righty. Both simulations used the sane tGme step at the 3D CFL Timit bt = 4z/ 3, The similatity of the
twa plots indicates that the degradation of the mmerical dispersion that resulied from going from the 20 1o tbe 3D
CFL litnit iz the canse of the failare of the 30 runs using the Yee solver. Taking advamtage of this ehservation, we
sdy in this section the instability arising in 2-1/2D simulaticns using a time step at the 3B CFL limit.

.31 Effects of spatial resolution

Snapshets of the longiadingl electie fisld et the Bront of the plasma taken at ¥ = 125 ps, and their corretpondiog
Fomrier transfocm, are given in Fig. 24, from 2-12D simulations using the Yae solver with the time step at the 3D
CFL limit cff = dzf ¥3 Three resplutions were congidzged: {a) 3, = & = 13pm, (h) 4, = &, = 65um, and {c)
d, = & = 325w, The amplimde of the instability is coughly inversely propondopal to the resolution. Por this
confignration, the instability exhibits two primary medes at vastots relafive levels, both at a fued oomber of grid
cells in the longitdinal direction, bt at a fzed sheolute length in the tranzverse direction. This indicates that the
transverse part of the modes is governed by the physical geometry of the problem while the lemginadingl pat is
governed by pnoaretical msolution,

Resolts from 2-1£2D simulation using the CK solver at the 3D CFL limii ¢62/8z = 1/ 3 at the rasolution §, =
& = §. 50 mare given in Fig. 25. The same two modes that were observed in the plote from the equivelent simulation
nsing the Yee solver (see Fig. 24-middle), are present, and the overall amplitnde of the instability is similar. These
sitnilarities on the detadls of the instability beraeen the Yee and CK solvets indicale that the dlﬁe-rances in oumetical
dispersion of the solvers 4o not constinie a key factor affecing fhe instabiliy.

5.3.2. Effects of time step

It 15 smking that all the solvers that lead o the lowest levels of instabylity had the same CFL. toe step oftorr =
&,/ ¥2. For checking whether this iz coingidental, simulations were performed using the CK solver, scanning llie lime
step betwean ofrfSz = 0.5 and efrfdz = 1. The Pourier Transform of the Llongitudinal feld averaged over the entire
domain taken at ¢ = 40 pe, is given in Fig. 26, exhibiting a sharp reduction of the inatability level m a narrow hand
around cif = &,/ V2. Since the nomerieal dispersion degeades in all directions when the time step diminighes, this
indicates that the value of the time step value is of more importanee than the numerical dispersion of the solver being
psed.

Simularions using the Yee or the CK solver with the singular tme step odi = §z/f V2 were pesformed and prodoced
kevels of ingtabilities that were much reduced (and detayedy compared to the 3D CFL tme step (not shonn). The
snapshot of the clectric ficld and its Fouricr Transform taken at f = 49 ps arc given 1o Fig. 27, The Foaricr spoctrutn
is very simdlar in each case, although the jnstability is slightly siconger with the CE solver than with the Yee solver
In bodch cases, the instability is ensily removed by nsing the 301:2) fileer (zee Fig. 28),
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Az mentioned in the previgus section. the solvers CK, CK4 and CES, which all have a CFL time step above the
singular time step od? = §z/ V2, produced significant levals of instability when run at their CFL limit, Tt was verified
that using those solvers in 3D atthe thine sep cdt = &z V2 tesulted in gready reduced levels of instability. Tt was also
chgerved that runtiang the Yee solver using non-cubic celfs, e.g. with lower resolition transversely sach as fx = 26z at
¥ =130, or Sx = 2687 aty = 50, produced the same patieen: a sighificant instability wag pessent when using the CFL
time step and was greatly reduced by using ofr = 6z ¥2. Hence for the suppression of the instability, the choice of the
solver seems (o depends solely on Whether its CFL condition zllows stability at the special time step cdf = 52/ V2 for
a given giid cell aspect ratio, but ot significantly on its numerical dispersion not on the valoe of the grid cell aspsct
rate.,

3.3.3. Effecis of fiedd gathering procedure

The scan of time step was repeated using the *momentum consetving procedure [471 , in which the Geld valoes
are interpolaled at the grid nodes befors boing gathored omto the partickes. The result is given m Fig. 29, With the
momentam conserving procedure, the level of instability is consistently high avd independent of the time slep. Since
the numerical dispersion of the solver varies substantially with the Gioe step, this result supports the conclusion that
the instability may not be of oumetical Cerenkor nature. The identification of the nahre of the matability and the
extplanation of the singalar ime step ofiy call for a mulidinniensional (no instakality was gbserved I 1D regardless of
the field gathenng method) analysiz of the disceetized Viagov algotithm that was employed, which is left for fumes
work,

The: resolts that were obeained Jead to the following conclusions: (i) the time step cits = &7/ V2 consistently pro-
duces the lowest levels of instability, regardless of dimensionality {ZD vs 30¥), the field solver being used, resolution,
aspect ratic of cells {within the range of the findte number of cages that were experimented); (i) the main advaniage
of the runable field eolver resides in allowing access to the singular time step ofiy rather than providiog improved
mimerical dispersion, which consequently dc net appear 10 be 2 primary driver of the instability: (i} the instability ts
Bt completely removed at ofdg and filtering is s61 needed, albeit at Jower Tevels; (iv) the Geld gathering procedure
15 k2y, a= the existence of a singular tirme step at which the instability is greatly reduced is obheerved using an "encrgy
conserving® precedure, bat not using a ‘momenmim conserving” procedur:, These reanlts indicote that the instabilioy
thal is being observed may not be a type of numerical Cerenkov instability, as originally conjectored.
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Figure M {lef) Snapssleod of the Jongitsdinal &lecirle Reld (E, 03 i the Fonl of the plaema at & = 113 pes {raghts Fouwsey Tean (oo of the Lhgiladina
gl fiedd, from 3- 120 dmulatient of & full seake 1OGeY LPA Tn o booswed frane a0y = D30, wsng i Yee salver, Tor flop) & o 42 = pm;
impddie} Sx = &z m 65w hisiom) dx m bz = 3250, The tho suep gt the 2DCFL hindt 287 = &2/ V3 st wied Tor dl theés siciolabons,
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Figure 25: {Jeft) Snapifot of e longitudinal electrse febd (£, ha e front of te plasmi st r = 12.5ps; (righ) Ponrier Transform of the longioudinad
electic feld. Trom 2- 2D simulstions of & il aoee 100V LPA i o bocoted Frame o » = 130, wilh the CK sobvar, uzing S = 57 = 52w, snd
e me siep a the 30 CFL it of = & ¥3,

0 67 BAE 68 19
Az

Figure 26 Fower Tranafonn of d1g lowgined|nal eleowic Aeld ac 1=40 ps, merged over tes whobe domain, from 2- 120 simulations of a il acalke

LGV 1P in a bonsted frome v ¢ w130, usiog the CK zobver, for Gme stepe betwesn oftffr = 0.5 and offdz = 1. versus A48 {Tafi) and o
dAfdz = 4 {righi.
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Figlse 27: ClaN) Soapsv oF the Jongindinal ebecorc fiedd (£, o the Tront of the plasmia @ ¢ = 49 ps, {ripht PFouder Townsfoma ol e longloddieal
eleeinc field, From 2-1/20 somulations of 4 Ml seale 1063y LPA In 3 bodziend Fame ot » = 130, otlug &x = 47 = 6. 5zh, 3 Uk LT 54 3t dhe
20 CFL Wit o = e f ¥E, Fox {6} the Yoo solver; (Botm) he CE solver,

Z mar

Fipure 28: Snepshot of the Jongimudinal slectrde Bebd (00 at the Tront of te posima ot = 49 ps feom 2- 1200 aamelsions of o fll scale 10GeY
LP in a bos e Frivee aby o L), asing &, = &, = &.5pum, amd the o step at te 20 CFL Houl o = sz\l"i.[m Chel) the Yee solver; (oghe) the
CK cobver. The Fileer 5(1:2) vrag used 1o removs the instabibiny than s vislbe v Fig- 77, The emaiing leamee 15 the wake.
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Figwre 29 Fourier TrawsTomn of te Jongiadinad elecpie feld o t=40 ps, sveraged over e whole domadn, from 2- 172D sinulasons of & full
stdle 1002y LPA Ina boosted Trame X ¢ = 1TH), osity B CK solver, [or Hme steps between cSifdr = 035 and cdtfdz = |, using & "m0menum
comserving” feld gathering seheme,
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Figure 300 Avarage beam etwyey gain venps onginndivel position (i the inboraony Frame) for simulations ot i, = 10 co down to 1017 go, wang
Frame= of velemence bermn 1= 12 aned 3 = 1000, in 2 122D {Tefih and 30 ighi-

Using the knowledge acquired from the 1) GV oclass sy, simolations of stages in the range of 0.1 GeV-1 TeV
were performed in 2- 170 and in the ronge of 0.1-100 GeV in 30, The plasn density a, soeples inveroely oo the enspy
gain, from 10'? co dows to 104 e in the 0.1 GeV-1 TeV range. These simulations nsed the paramelers given in Table
2 scaled appropriateiy, and nsed the high speed of the beosted simulations (o allow fast-farnaround improvement of
the stape desipn [I8, I9]. Scaled energy gain wad iocreased by adjusting the phaze of the beam injecton behind the
laser by ~ 129 in 3Dy and 7% in 2D, with respect 1o the results presemiad In the precediog section. The 5% Jevel
difference batween the 2D and 30 beam phases i likely due to smal} differences in wake struciure, laser depletion,
aind the small nuaber of betaton oscillatons of the laser, To mitimize beam loss, the beam dimensions were reduced
by a factor of 3 in each dimenzion. Simulations showing performance of thiz design m 2- 172D were performed nsimg
the Yee solver with fileer S{1) fop the 0.1- 30 GaV g, S(1:2) for the KN Ge'V and 5(1:2:3) for the 1 TeV ones. The
3D simulations were performed wsing the CE2 soiver with filter S¢E) for the 4.1-1 GeV runs, and S{1:2} for the 10-[({0
GeV ones. The sverage beam enetpy piin stosy = ploted in Fig. 30, acaling the 0.1-100 Ge¥ s 1o the 1 TeV
range in 2-1/2D, and the 0.1-10 GV muns b the 100 GeV range in 3D. The resulis exhibit an eXcellent agreement of
the peak scaled besm energy gain between (.1-1¢0 GeV euns, and on the sealed beam enetgy gain historics between
the: 1-100 Ge¥ runs. A higher level of smoolhing was needed for the 1TeV case, explainiag the deviation past I on,
This deviation 14 of litille Inportance in practice, where o 1z moatly ieterested in the bearn evolution up-to de peak
energy point. The differences at 10" on the scaled beams eperay main history can be atributed to the effects from
having only a few laser oscillations per puise.

Using (13), the speedup of the full scale 100 GeV class cun, which used a boosted frame of ¥ = 400 a3 frame of
referance, i estimated vo be over 100,000, as compared to a nm uging the laboratory frame. Ascuming the uze of 3
few thougsam?s of CPUs, a simwlagen that weulkd require severs) decades to complate using standand PIC tachniques
in the idbocatory Brame, was completed in foor hours using 2016 CFUs of the Cray system at NERSC. With the same
analyziz, the speadup of the 2-172D | TeV stage is estimated to be over a million

L



G Conclysion apd audook

Thet technique propased in [1] was applied suecessfully to speedup by arders of magnimde calculations of laser
plasma accelerators from first principles. The theorstical speedup estimale from [1] was improved, while complica-
tkms associated with the handling of inpat and outpot date belwesn a boosted frame and the laboratary frame ware
discussed, Practical solutions were presented, including a technigue for injecting the leser that is simpler and more
efficient than methods proposed previously.

Controd of an instability that was Hroiting the speedup of sach calenlations in previous wotk is demonstraeed, via
the use of a field selver with mnable coefficients and digital Altering. The mnsble solver was shown to be compatible
with exipting "exact” cument deposition wobnioues oo constrvation of Gauss Law, and sccosnodares Perfectly
Matched Lavers for efficient sbsorprion of ouigoing waves,

Exiengive testing of the methods presented for mamenical Cerenkoyv mitigation reveals that choosing the frame of
the wake zs the frame of reference allows for higher levels of fltering and damping than is possible In other frames with
the game accuracy. Italso revealzd that thers exists a singular time step for which the Tevel of instability is minimal,
independently of ather numerical pararseters, especially the numerical dispersion of the solver. This indicaiss tha
the vbierved instability may not be cansed by numerical Cerenkov effects, Analysis of the nature of the instability is
wnderway, ot regardiess of canse, the methods presented mitigate il effectively. The ranability of the field solver 11
key in providing stability in 3D o the singular ime step, which is not stiainable by the standard Yee solver.

The use of those techniques permitted the first calculations in the aptimal fame of 100 GeW. 100 GeV and 1
TeV class stages, with speedups over 4, 5 ard 6 orders of magnitude respeciively over what would be required by
“standard™ laboratory frame cakcnlations, which are impractical for such stages doe to computaticnal requirements.

These results ghow that the kechmigue can be applied 1o the medeling of 10 GeV stages, and future work will
inchde the effects of beam loading, plasma density ramps, as well as particle tapping in the near futore. Future work
on e warnerical methods inclads o comprehensive fnalysis of the Insiability aod the cistenes of a smgular Gme
step under certatn conditions, as well as the Tocal application of filieting, smoothing andfor mesh refinerment [57, 58]
ampund the front of the plasmas, where the insmbility develops. The lader is expected o provide mitigation of the
instability while preserving accuracy in the core of the simulation.

7. Appendix I: One dimensional analysk of the CK selver
Mthaqugh the most interesting applications of the TK solver require two o thres dimensions, analysis of Ibe

method in one dimension reveals a potential keue when odr = &x. In one dimension {cheosing x). Equatjons {43}-{44)
reduce to

BEnn = BET+ ( £ - ER) (73)
i Er {

B = Ef+ o (BN - BALE) - E 74)

D to uniform tme discretization and lincarity, the apense of the system (73314} to arbitrary disoribations and
evolutions of sources (i, macro-particles) can be writien ag the sum of ity yesponge 1o the excication from 2 Heaviside
function in ime, at one location in the grid. Assuming a sowrce term of the form JI! = H(¢) where H is the Heaviside
Sunction, and selting the time step at the Coucant limdt o8t = x, the system {73474} produces a spurions "odd-even”
pacillations ot the Myquisi freqnency, 25 shown in Fig. 31 (middle-left). If a simuzpidal signal oscillating af the Myquist
frequency is added to the source tem, the amplimde of the spurious oscillation grows linearly with time, ag showmn in
Fig. 31 (middle-cight). The spuriots oscillation iz effectively suppressed in both cases by Lhe application of a™1-2-1"
bilinear digital filer, as shown in Fig. 31 (bottom) . These types of filtering are of common use in Particle-In-Cell
ciodes, ofien repeated a prescribed number of dmes and followed by a compensaion stage o avoid excessive domping
of long wavelengths [47].

The: impact of the spunovs osallaiions aod Ihe effectiveness of the bilinesr fillering &t suppressing it in aciaal
simulations was tested on a 1D simulation of a scaled wakeficld accclevation stage, The physical and merericl
pacameters of the simulation are given in table 3. Snapshots of the oansverse electric field {aligned with te Laser
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Flgure 31: (top) Sme Hisiory (in Bme sieps) of the carment soree For (befi) & Heaviside siep (right) 2 heavitide siep modilated by 3 sinusosdal
oscillation at the Myquist freqoency; {middle} rrapones of the syatem of squathons (733014} vie 3 aeepshor of the clectriz ficld afer 10 ime stéps,
withcuit fittering of the souces terme {bofiom) response of the syslem of equations [73).{74} with applicaion of bilinear digital Alter of the eource
e in spaer. A time stap of off = Sr was used in all nins and scaled constanls & = & = | were acawmed

polarization) and the plasma clecten phase space, taken once the laser has propagated about half way through the
plasma {after ~20000 dme steps) ape given in Fig, 32, Withowt filtering of the curoent density, an instabiluy develops
at the grid Nyguizt frequency, severely distupting the plasma wake, despite the Fact that cubic sphines were vsed o de-
posil current from maceo-particles ko the grid and gather the slectromagnedic fisld from the grid to the macro-particles.
One application of The Mlingw fhering (withom compensation) 13 sufficiem w suppress the spurious instabidicy and
prodice 4 stzady and clean wake,

8. Appendix II: Perfecily Matched Laver

The split form of Perfectly Matched Layer (FML) [52] framework applies raadily to Eqs (43)-{44). The equations
on the component along 7 of the magnedc fisld are given by

(& +o) By = —-ME, (73
(A+ay)By = AE, (76)
BBy =~ (Bt By) am
(8 +a) B = A {B+ By) (78)

where o, and ¢, are the absotbing layer coefficieniz along x and ¥ respectively. The equaions for the other compo-
nents of the magnetc field and for the eleciic field are obtained similarly, applying the standard difference operator
on the spatial dervatives of the clecitic fickd and the enkmged difforonce operator oo the spatial detvatives of the
magnes; field. The formula to updaie the fields is obuained by solving the finite-diference equations or by integranng
over one lime step, giving

. §_g
T _ n-142 T s
Bﬂmln,ﬁlm = £ Bl s _G'_x—'ﬁxErmt,rz,Jn.m {7%
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Tabbe 3- List of parameters for srabed 10G=Y class LPA, siage siculstion.

beam length L B5 nm
besrn peak density Hy 10 em~?
beam Ioagitudinal profile &xp [—ﬁfﬂﬁ}
lager wavelength 4 D8 pem
lazer Llength (FWHM} L 1£.08 ym
normalized vector potential — ay [
lazer Yongitudinal profile sinimz{L}
plazma density on axis ", W0 em™
plasma iongimdinal profile fat
Plasmma length L 1.5 mm
plasia entrance camp profile half sinus
plasnea enirance ramp length 4 pm
mrnber of cells Ny 952
cell size &z Af24
time step o dife
particle deposition order cnbic
_#of plasta particlegicell . 0w
Bl = LBCIE L4 16 pep B i (30
LGk LY Bl P11 S oy =2l pE 1 2R
Bty = LB~ P afx;,., (Bex + B )l ttvs (81)
B = fyg,.g,,mw&‘af*a,(sﬁaz,] A @)

where & = {1 = 8t/2) { (1 + odey?) via direct solve, or ¢ = ¢ via time inlegration {note that in our tests, bath
implementalions gave nearly identical resnlts),

The FMML using the stencil glven by (82} aras tested and compaced to the standard Yee implementation in 213 and
3D. Fig. 13 snapshots from 2D simulations of the reflected residwe from a PML Jayer of a pukse with amplivsde given
by the Hatriz functon (10 = 15 4 cos{2retf L) + b » cos{daepf Ly - caplbmet /L2 whes ¢ is time, o is the speed
of light and L = 508x iz the pulse length in cell size uniis. A grid of 4002400 cells was wsed with §x = év. The
absoching layer was § cells deep and the dependency of the PML cosflicients with the index position § in e layer
was ;= i, EELFAY with 0o = 4082, & = 58x and 1 = 2. The alternative prescription for the coefficients given in
[53, 54), which reads 0 = (i — LE) fdx with & = ¢ and o, m &, (ix/ A0, was also 1ested.

For the penetic test case that has been considered, e new implementation exhibited a very low residue of re-
Hections from the FML layer, which are cualitatively and quantitatively very similar to the residue obtained with a
stardard PML implementation. by agreement with yesults feom [53, 54), the use of the modified coctficients o Ted o
an order of magnitude imprevernent ovet the use of the standard coefficicnts,

The 3D rests gave similar absorprien efficiency between the Yee and the new solver implementations of the PML,
For all the CK solver coefficients given in Table L.

Tt waz shownin [53, 54] thal the efficiency of the layer can be imptoved fucthet for the standard PML by augment-
ing 1he squations with additional terms, However, 2 similar extension may not be readily svailable when using the
Cole-Karkkainen stencil and is not considerad here,
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apphcatbon of 3 balinear digital Rler o the coment dedsily.

0. Acknwwledgments

We am thanddul to I L. Brabwnler, ). B, Cary, B Cowan, E. Esarcy, A. Fricdman, C. Hoang, 5. T Mating, W. B,
Moz, B. A Shadwick, and C. B, Schmeder for insightful discossions.

41



. o
0 40 8k O 40 B8O
X X

Figure 33; RBofloctod aghal (it 4B} from o PML Liyor wing the Yea o the Cole-Karkkamen solver. Buh simalation was cun for dhe qoe atep s
autha Courant limit,

41



References

1E] J-L Vay, Phgs, Rev Lewm, ™ {2077 LHHOS,
121 T. Talima, 7. M. Dawani, Phye, Rog Low, 43 (1079 3487,
(3} E Bsarey, v ol Rev. Modem Phys 81 252 (2000 1729,
[l C. . R, Geddes, 21 af, Naraee 430, 338 (20045,
[5 & F In. Manghes, & al, Maipre 431, 335 (200 5.
[6] 1. Fawee, &2 al, Mawcrs 431, 541 (20047,
[7] W.E Leerans, ef af., Watwne Physics T, 506 (20061,
[8] C.B, Schooeder, of al. Froc. jith Advauced Accalsrarar Concepie Workehop, Santa Cruz, ©a [2008) 208,
9] C.G. K. Geaddes, £l af,, "Laser Flasma Farticle Accebermnors; Large Fields o Somller Faclliny Souces,” Scilac Review 13 020097 13.
(1Y C 4. R Geddes e af, S, Fhys, Confl Series ¥ 135 (3008) 1200211 L,
(11} C. Hurang ¢ 8f 5, Phys. Conf, Saries 10 {2009} 13005
112] Brtp:ffloasis.ml.gov
[13] T L Brubtwiler e of., Proc. £31h Adwemced Acceferanor Conceprz Workshop, Sava Cruz, CA (2008 19,
[14] B, A Shadwick, C. B. Schroxder, B Esarey, Phyvr, Flarnos e (20097 056704
11531 F Sprangie, E, Esorey, and A, Tig, Fios. Rew Lesrers g ¢ L9900 200 12014,
M&] C. Huang ef af., 7. of Compur, Plyx, 217 {2000 655-670,
(17 B.Feng, €. Humng, V. Doyk, WE, Mod, P Mugeli, T. Karconkeas, J. Compure Phys, 278 C3000) 5340,
18] E. Commer-Michel, o al. Froe 7ith Advanced Arceleraior Concepts Wavkthop, Santa Crez, CA (2008) 197,
f19) C 0GR Oeddes o7 af, Pro Particle Acoelerarar Cosference, Yancomver, Canada (3009) WESRFROTS,
(209 1. vay, Phys. Plassag, W5 (2006} 056701,
[21] J.E Bona J Compud, Phys. 12 (1973} 131-176,
[Z2] 1. Heber, B, Lee, H 1 Flein, ). B Boriz, Proc 5o Conf. Mo, Sim, Plezmas, Borkeley, CA (1973 4648,
[23] B. Cowan. er af, Proc, 13nk Advoncald Accilerator Concepts Woarkthop, Sasta Cree, CA {2008) 109,
[24] L-L. Vay & al, Proc. Particle Accelermor Conference, Yancauver, Cinada (2009 TU 1PENM.
[25] 5. F Martins, Fror. Particle Aceelerator Conference, Vaneogver, Canads {2009) THOJBOSS.
[26] L-L vay eral., £ Phve. Canft Serics 180 {20000 10006
27 1L Vay, W. M. Fawley, C. 5. Geddes, E. Cormier-Michal, B F. Groks, arKiv:0809 5603 {Sept. 2009)
28] 5 F Marins, B. A Fonsecy, L, O, Silve, W. Ly, W, B, Tord, Compit, P, Comm, 182 (20100 559-875,
[2%] D. L. Brohwiler, Privare Cothiatication,

[30] D.T. Geowe, A, Frivdman, J-L. Vay, . Haber, AP Confl Proe. 74% (2005) 55.

[31] T, Esickepow, Conngiet, Phys. Comaes, 135 (20013 144-53.

[32] B.B. Godfrey, . Compur, Phys IS (1974 504521

[32] B.B. Godfrey, ). Compa. Ployc 19 (1975} 5576,

[34] A.D. Greenwood, K. L Cartwright, I W. Luginsland, B A, Baca, J, Cormp, Phys, 2 (2004) 665.684,
[35] B_B. Godfrey, Proc. Ninh Comf on Mumr. St of Plassnar (1980}

4] A, Friedman, £ Compne, Phys S 1000} 207,

[37] B. Abe, ™. Sakairi, R, Tatani, B, Closda, £, Compre Plys, €3 (1586) 247-257,

[38] E. Cornuer-Michel, B. A, Shadwlck, . G. R, Geddes, E. Ezsarey, C. B, Schroedes, W. P Leewans, Phy Rev E 78 (2008) 016404
[39 1. B. Cole, [EEE Thans, dicrows Theory Tech,, 45 (1997 3015496

[49] 1. B. Cole, {EEE Travts, Amienmas Prop,, 58 (1002 11351191

1] M. Karkkainen, E. Gonaj, T. Lan, T. Wellid, Pror. Inreraaioral Computatiomal Accelerater Physics Couferepee, Chamonix, France {2006),

(2] B_ 8. Yee, IEEE Trons, Anr. Preop. 14 (1966 302-317

3] B Cowan, Pror 10 nternm, Compui. Accel. Plrec Corf, San Francisco, A (20000,
[4] 1-F Bérenger, ) Compue Phos. 104 (1994 185,

3 R 5 Taoog, ef ol Phys. Plesosas 13 (2006) 056700

HMG] B. Cowan, Frivdie commumcmior,

{471 C. K. Eindsall and A, BE. Langdon, Plasma Physics Via Computer Sinulavion (Adaro-Hilger, 19413,
T48] A. B. Langdon, Conel, P, Comnee 70 [192) 447,

{49 B, Mader, £ Compent Phiys, 68 (927348,

(54 L.L Yy, C Dewisch, Phys, Plosenrs 5 (1995} 1190,

(511 I Willasenor, O Booeoan, Comper. Ploes, Come, 68 (1900 306,

(52 1P Bercoger, L Compra. Phys, 104 (19604) 185,

531 1-L Yy, /. Counprr Phys 165 (20000 311

[54] J-L. Vayw £ Compat Phys, 183 (IO 367,

3] F-L. Vay. efal, in preparagon,

136] A, B. Langdon. C, K. Bindzall. Phys Flefar 13 (19700 2115,

157] D-L. Vay ¢t ., P, Flasmas 11 (0040 1925,

I158] L-L M ).-C. Adans, A Héron, Covepnr, Fies, Comm 164 (20045 171,

43


http://loasis.lbl.gov

