377 research outputs found
Identification of two new HMXBs in the LMC: a 2013 s pulsar and a probable SFXT
We report on the X-ray and optical properties of two high-mass X-ray binary
systems located in the Large Magellanic Cloud (LMC). Based on the obtained
optical spectra, we classify the massive companion as a supergiant star in both
systems. Timing analysis of the X-ray events collected by XMM-Newton revealed
the presence of coherent pulsations (spin period 2013 s) for XMMU
J053108.3-690923 and fast flaring behaviour for XMMU J053320.8-684122. The
X-ray spectra of both systems can be modelled sufficiently well by an absorbed
power-law, yielding hard spectra and high intrinsic absorption from the
environment of the systems. Due to their combined X-ray and optical properties
we classify both systems as SgXRBs: the 19 confirmed X-ray pulsar
and a probable supergiant fast X-ray transient in the LMC, the second such
candidate outside our Galaxy.Comment: 12 pages, 10 figures, accepted for publication in MNRA
Inverse flux quantum periodicity of magnetoresistance oscillations in two-dimensional short-period surface superlattices
Transport properties of the two-dimensional electron gas (2DEG) are
considered in the presence of a perpendicular magnetic field and of a {\it
weak} two-dimensional (2D) periodic potential modulation in the 2DEG plane. The
symmetry of the latter is rectangular or hexagonal. The well-known solution of
the corresponding tight-binding equation shows that each Landau level splits
into several subbands when a rational number of flux quanta pierces the
unit cell and that the corresponding gaps are exponentially small. Assuming the
latter are closed due to disorder gives analytical wave functions and
simplifies considerably the evaluation of the magnetoresistivity tensor
. The relative phase of the oscillations in and
depends on the modulation periods involved. For a 2D modulation
with a {\bf short} period nm, in addition to the Weiss oscillations
the collisional contribution to the conductivity and consequently the tensor
show {\it prominent peaks when one flux quantum passes
through an integral number of unit cells} in good agreement with recent
experiments. For periods nm long used in early experiments, these
peaks occur at fields 10-25 times smaller than those of the Weiss oscillations
and are not resolved
M51 ULX-7: superorbital periodicity and constraints on the neutron star magnetic field
In this work, we explore the applicability of standard theoretical models of accretion to the observed properties of M51 ULX-7. The spin-up rate and observed X-ray luminosity are evidence of a neutron star with a surface magnetic field of 2-7 x 10(13) G, rotating near equilibrium. Analysis of the X-ray light curve of the system (Swift/XRT data) reveals the presence of a similar to 39 d superorbital period. We argue that the superorbital periodicity is due to disc precession, and that material is accreted on to the neutron star at a constant rate throughout it. Moreover, by attributing this modulation to the free precession of the neutron star we estimate a surface magnetic field strength of 3-4 x 10(13) G. The agreement of these two independent estimates provide strong constraints on the surface polar magnetic field strength of the NS
Hofstadter-type energy spectra in lateral superlattices defined by periodic magnetic and electrostatic fields
We calculate the energy spectrum of an electron moving in a two-dimensional
lattice which is defined by an electric potential and an applied perpendicular
magnetic field modulated by a periodic surface magnetization. The spatial
direction of this magnetization introduces complex phases into the Fourier
coefficients of the magnetic field. We investigate the effect of the relative
phases between electric and magnetic modulation on band width and internal
structure of the Landau levels.Comment: 5 LaTeX pages with one gif figure to appear in Phys. Rev.
The population of X-ray supernova remnants in the Large Magellanic Cloud
We present a comprehensive X-ray study of the population of supernova
remnants (SNRs) in the LMC. Using primarily XMM-Newton, we conduct a systematic
spectral analysis of LMC SNRs to gain new insights on their evolution and the
interplay with their host galaxy. We combined all the archival XMM observations
of the LMC with those of our Very Large Programme survey. We produced X-ray
images and spectra of 51 SNRs, out of a list of 59. Using a careful modelling
of the background, we consistently analysed all the X-ray spectra and measure
temperatures, luminosities, and chemical compositions. We investigated the
spatial distribution of SNRs in the LMC and the connection with their
environment, characterised by various SFHs. We tentatively typed all LMC SNRs
to constrain the ratio of core-collapse to type Ia SN rates in the LMC. We
compared the X-ray-derived column densities to HI maps to probe the
three-dimensional structure of the LMC. This work provides the first
homogeneous catalogue of X-ray spectral properties of LMC SNRs. It offers a
complete census of LMC SNRs exhibiting Fe K lines (13% of the sample), or
revealing contribution from hot SN ejecta (39%). Abundances in the LMC ISM are
found to be 0.2-0.5 solar, with a lower [/Fe] than in the Milky Way.
The ratio of CC/type Ia SN in the LMC is , lower than in local SN surveys and galaxy clusters.
Comparison of X-ray luminosity functions of SNRs in Local Group galaxies
reveals an intriguing excess of bright objects in the LMC. We confirm that 30
Doradus and the LMC Bar are offset from the main disc of the LMC, to the far
and near sides, respectively. (abridged)Comment: Accepted for publication in Astronomy and Astrophysics. 54 pages, 18
figures, 12 tables. The resolution of the figures has been reduced compared
to the journal version; v2: New title, minor text edits; v3: Correct version
Electron transport in Coulomb- and tunnel-coupled one-dimensional systems
We develop a linear theory of electron transport for a system of two
identical quantum wires in a wide range of the wire length L, unifying both the
ballistic and diffusive transport regimes. The microscopic model, involving the
interaction of electrons with each other and with bulk acoustical phonons
allows a reduction of the quantum kinetic equation to a set of coupled
equations for the local chemical potentials for forward- and backward-moving
electrons in the wires. As an application of the general solution of these
equations, we consider different kinds of electrical contacts to the
double-wire system and calculate the direct resistance, the transresistance, in
the presence of tunneling and Coulomb drag, and the tunneling resistance. If L
is smaller than the backscattering length l_P, both the tunneling and the drag
lead to a negative transresistance, while in the diffusive regime (L >>l_P) the
tunneling opposes the drag and leads to a positive transresistance. If L is
smaller than the phase-breaking length, the tunneling leads to interference
oscillations of the resistances that are damped exponentially with L.Comment: Text 14 pages in Latex/Revtex format, 4 Postscript figure
Edge magnetoplasmons in periodically modulated structures
We present a microscopic treatment of edge magnetoplasmons (EMP's) within the
random-phase approximation for strong magnetic fields, low temperatures, and
filling factor , when a weak short-period superlattice potential is
imposed along the Hall bar. The modulation potential modifies both the spatial
structure and the dispersion relation of the fundamental EMP and leads to the
appearance of a novel gapless mode of the fundamental EMP. For sufficiently
weak modulation strengths the phase velocity of this novel mode is almost the
same as the group velocity of the edge states but it should be quite smaller
for stronger modulation. We discuss in detail the spatial structure of the
charge density of the renormalized and the novel fundamental EMP's.Comment: 8 pages, 4 figure
Planar cyclotron motion in unidirectional superlattices defined by strong magnetic and electric fields: Traces of classical orbits in the energy spectrum
We compare the quantum and the classical description of the two-dimensional
motion of electrons subjected to a perpendicular magnetic field and a
one-dimensional lateral superlattice defined by spatially periodic magnetic and
electric fields of large amplitudes. We explain in detail the complicated
energy spectra, consisting of superimposed branches of strong and of weak
dispersion, by the correspondence between the respective eigenstates and the
``channeled'' and ``drifting'' orbits of the classical description.Comment: 11 pages, 11 figures, to appear in Physical Review
Spin-dependent (magneto)transport through a ring due to spin-orbit interaction
Electron transport through a one-dimensional ring connected with two external
leads, in the presence of spin-orbit interaction (SOI) of strength \alpha and a
perpendicular magnetic field is studied. Applying Griffith's boundary
conditions we derive analytic expressions for the reflection and transmission
coefficients of the corresponding one-electron scattering problem. We
generalize earlier conductance results by Nitta et al. [Appl. Phys. Lett. 75,
695 (1999)] and investigate the influence of \alpha, temperature, and a weak
magnetic field on the conductance. Varying \alpha and temperature changes the
position of the minima and maxima of the magnetic-field dependent conductance,
and it may even convert a maximum into a minimum and vice versa.Comment: 19 pages, 9 figure
Collective Edge Excitations In The Quantum Hall Regime: Edge Helicons And Landau-level Structure
Based on a microscopic evaluation of the local current density, a treatment
of edge magnetoplasmons (EMP) is presented for confining potentials that allow
Landau level (LL) flattening to be neglected. Mode damping due to
electron-phonon interaction is evaluated. For nu=1, 2 there exist independent
modes spatially symmetric or antisymmetric with respect to the edge. Certain
modes, changing shape during propagation, are nearly undamped even for very
strong dissipation and are termed edge helicons.
For nu > 2 inter-LL Coulomb coupling leads to a strong repulsion of the
decoupled LL fundamental modes. The theory agrees well with recent experiments.Comment: 4 pages in Latex/Revtex/two-column format, 3 ps figure
- …
