296 research outputs found
Identification of two new HMXBs in the LMC: a 2013 s pulsar and a probable SFXT
We report on the X-ray and optical properties of two high-mass X-ray binary
systems located in the Large Magellanic Cloud (LMC). Based on the obtained
optical spectra, we classify the massive companion as a supergiant star in both
systems. Timing analysis of the X-ray events collected by XMM-Newton revealed
the presence of coherent pulsations (spin period 2013 s) for XMMU
J053108.3-690923 and fast flaring behaviour for XMMU J053320.8-684122. The
X-ray spectra of both systems can be modelled sufficiently well by an absorbed
power-law, yielding hard spectra and high intrinsic absorption from the
environment of the systems. Due to their combined X-ray and optical properties
we classify both systems as SgXRBs: the 19 confirmed X-ray pulsar
and a probable supergiant fast X-ray transient in the LMC, the second such
candidate outside our Galaxy.Comment: 12 pages, 10 figures, accepted for publication in MNRA
M51 ULX-7: superorbital periodicity and constraints on the neutron star magnetic field
In this work, we explore the applicability of standard theoretical models of accretion to the observed properties of M51 ULX-7. The spin-up rate and observed X-ray luminosity are evidence of a neutron star with a surface magnetic field of 2-7 x 10(13) G, rotating near equilibrium. Analysis of the X-ray light curve of the system (Swift/XRT data) reveals the presence of a similar to 39 d superorbital period. We argue that the superorbital periodicity is due to disc precession, and that material is accreted on to the neutron star at a constant rate throughout it. Moreover, by attributing this modulation to the free precession of the neutron star we estimate a surface magnetic field strength of 3-4 x 10(13) G. The agreement of these two independent estimates provide strong constraints on the surface polar magnetic field strength of the NS
Inverse flux quantum periodicity of magnetoresistance oscillations in two-dimensional short-period surface superlattices
Transport properties of the two-dimensional electron gas (2DEG) are
considered in the presence of a perpendicular magnetic field and of a {\it
weak} two-dimensional (2D) periodic potential modulation in the 2DEG plane. The
symmetry of the latter is rectangular or hexagonal. The well-known solution of
the corresponding tight-binding equation shows that each Landau level splits
into several subbands when a rational number of flux quanta pierces the
unit cell and that the corresponding gaps are exponentially small. Assuming the
latter are closed due to disorder gives analytical wave functions and
simplifies considerably the evaluation of the magnetoresistivity tensor
. The relative phase of the oscillations in and
depends on the modulation periods involved. For a 2D modulation
with a {\bf short} period nm, in addition to the Weiss oscillations
the collisional contribution to the conductivity and consequently the tensor
show {\it prominent peaks when one flux quantum passes
through an integral number of unit cells} in good agreement with recent
experiments. For periods nm long used in early experiments, these
peaks occur at fields 10-25 times smaller than those of the Weiss oscillations
and are not resolved
Deciphering the properties of the central engine in GRB collapsars
The central engine in long gamma-ray bursts (GRBs) is thought to be a compact object produced by the core collapse of massive stars, but its exact nature (black hole or millisecond magnetar) is still debatable. Although the central engine of GRB collapsars is hidden to direct observation, its properties may be imprinted on the accompanying electromagnetic signals. We aim to decipher the generic properties of central engines that are consistent with prompt observations of long GRBs detected by the Burst Alert Telescope (BAT) on board the Neil Gehrels Swift Observatory. Adopting a generic model for the central engine, in which the engine power and activity time-scale are independent of each other, we perform Monte Carlo simulations of long GRBs produced by jets that successfully breakout from the star. Our simulations consider the dependence of the jet breakout time-scale on the engine luminosity and the effects of the detectorâs flux threshold. The two-dimensional (2D) distribution of simulated detectable bursts in the gamma-ray luminosity versus gamma-ray duration plane is consistent with the observed one for a range of parameter values describing the central engine. The intrinsic 2D distribution of simulated collapsar GRBs peaks at lower gamma-ray luminosities and longer durations than the observed one, a prediction that can be tested in the future with more sensitive detectors. Black hole accretors, whose power and activity time are set by the large-scale magnetic flux through the progenitor star and stellar structure, respectively, are compatible with the properties of the central engine inferred by our model
The population of X-ray supernova remnants in the Large Magellanic Cloud
We present a comprehensive X-ray study of the population of supernova
remnants (SNRs) in the LMC. Using primarily XMM-Newton, we conduct a systematic
spectral analysis of LMC SNRs to gain new insights on their evolution and the
interplay with their host galaxy. We combined all the archival XMM observations
of the LMC with those of our Very Large Programme survey. We produced X-ray
images and spectra of 51 SNRs, out of a list of 59. Using a careful modelling
of the background, we consistently analysed all the X-ray spectra and measure
temperatures, luminosities, and chemical compositions. We investigated the
spatial distribution of SNRs in the LMC and the connection with their
environment, characterised by various SFHs. We tentatively typed all LMC SNRs
to constrain the ratio of core-collapse to type Ia SN rates in the LMC. We
compared the X-ray-derived column densities to HI maps to probe the
three-dimensional structure of the LMC. This work provides the first
homogeneous catalogue of X-ray spectral properties of LMC SNRs. It offers a
complete census of LMC SNRs exhibiting Fe K lines (13% of the sample), or
revealing contribution from hot SN ejecta (39%). Abundances in the LMC ISM are
found to be 0.2-0.5 solar, with a lower [/Fe] than in the Milky Way.
The ratio of CC/type Ia SN in the LMC is , lower than in local SN surveys and galaxy clusters.
Comparison of X-ray luminosity functions of SNRs in Local Group galaxies
reveals an intriguing excess of bright objects in the LMC. We confirm that 30
Doradus and the LMC Bar are offset from the main disc of the LMC, to the far
and near sides, respectively. (abridged)Comment: Accepted for publication in Astronomy and Astrophysics. 54 pages, 18
figures, 12 tables. The resolution of the figures has been reduced compared
to the journal version; v2: New title, minor text edits; v3: Correct version
Hofstadter-type energy spectra in lateral superlattices defined by periodic magnetic and electrostatic fields
We calculate the energy spectrum of an electron moving in a two-dimensional
lattice which is defined by an electric potential and an applied perpendicular
magnetic field modulated by a periodic surface magnetization. The spatial
direction of this magnetization introduces complex phases into the Fourier
coefficients of the magnetic field. We investigate the effect of the relative
phases between electric and magnetic modulation on band width and internal
structure of the Landau levels.Comment: 5 LaTeX pages with one gif figure to appear in Phys. Rev.
Electron transport in Coulomb- and tunnel-coupled one-dimensional systems
We develop a linear theory of electron transport for a system of two
identical quantum wires in a wide range of the wire length L, unifying both the
ballistic and diffusive transport regimes. The microscopic model, involving the
interaction of electrons with each other and with bulk acoustical phonons
allows a reduction of the quantum kinetic equation to a set of coupled
equations for the local chemical potentials for forward- and backward-moving
electrons in the wires. As an application of the general solution of these
equations, we consider different kinds of electrical contacts to the
double-wire system and calculate the direct resistance, the transresistance, in
the presence of tunneling and Coulomb drag, and the tunneling resistance. If L
is smaller than the backscattering length l_P, both the tunneling and the drag
lead to a negative transresistance, while in the diffusive regime (L >>l_P) the
tunneling opposes the drag and leads to a positive transresistance. If L is
smaller than the phase-breaking length, the tunneling leads to interference
oscillations of the resistances that are damped exponentially with L.Comment: Text 14 pages in Latex/Revtex format, 4 Postscript figure
Negative Electron-electron Drag Between Narrow Quantum Hall Channels
Momentum transfer due to Coulomb interaction between two parallel,
two-dimensional, narrow, and spatially separated layers, when a current
I_{drive} is driven through one layer, is studied in the presence of a
perpendicular magnetic field B. The current induced in the drag layer,
I_{drag}, is evaluated self-consistently with I_{drive} as a parameter.
I_{drag} can be positive or negative depending on the value of the filling
factor \nu of the highest occupied bulk Landau level (LL). For a fully occupied
LL, I_{drag} is negative, i.e., it flows opposite to I_{drive}, whereas it is
positive for a half-filled LL. When the circuit is opened in the drag layer, a
voltage \Delta V_{drag} develops in it; it is negative for a half-filled LL and
positive for a fully occupied LL. This positive \Delta V_{drag}, expressing a
negative Coulomb drag, results from energetically favored near-edge inter-LL
transitions that occur when the highest occupied bulk LL and the LL just above
it become degenerate.Comment: Text file in Latex/Revtex/preprint format, 7 separate PS figures,
Physical Review B, in pres
Edge magnetoplasmons in periodically modulated structures
We present a microscopic treatment of edge magnetoplasmons (EMP's) within the
random-phase approximation for strong magnetic fields, low temperatures, and
filling factor , when a weak short-period superlattice potential is
imposed along the Hall bar. The modulation potential modifies both the spatial
structure and the dispersion relation of the fundamental EMP and leads to the
appearance of a novel gapless mode of the fundamental EMP. For sufficiently
weak modulation strengths the phase velocity of this novel mode is almost the
same as the group velocity of the edge states but it should be quite smaller
for stronger modulation. We discuss in detail the spatial structure of the
charge density of the renormalized and the novel fundamental EMP's.Comment: 8 pages, 4 figure
Resonant peak splitting for ballistic conductance in magnetic superlattices
We investigate theoretically the resonant splitting of ballistic conductance
peaks in magnetic superlattices. It is found that, for magnetic superlattices
with periodically arranged identical magnetic-barriers, there exists a
general -fold resonant peak splitting rule for ballistic conductance,
which is the analogy of the -fold resonant splitting for transmission in
-barrier electric superlattices (R. Tsu and L. Esaki, Appl. Phys. Lett. {\bf
22}, 562 (1973)).Comment: 9 pages, 3 figures, latex forma
- âŠ