1,494 research outputs found

    The role of intratidal oscillations in sediment resuspension in a diurnal, partially mixed estuary

    Get PDF
    Using detailed observations of the mean and turbulent properties of flow, salinity and turbidity that spanned 2001/02, we examined the physical mechanisms underpinning sediment resuspension in the low-energy Swan River estuary, Western Australia. In this diurnal tidally-dominated estuary, the presence of intratidal oscillations, a tidal inequality lasting 2 to 3 hours on the flood tide, generated by interactions of the four main diurnal and semidiurnal astronomical constituents, K₁, O₁, M₂, and S₂, played a major role in modifying vertical stratification and mixing. These intratidal oscillations are controlled by phase differences between the tropic and synodic months rather than being temporally-fixed by bed friction, as occurs in semidiurnal estuaries. Intratidal oscillations are largest, at around 0.1 m, near to the Austral solstice when the lunar and solar declination are in-phase. Despite the seemingly small change in water level, shear-induced interfacial mixing caused destratification of the water column with the top-to-bottom salinity (ΔS) difference of 3.5 present early in the flood tide eroded to less than 0.3 by the end of the intratidal oscillation. High turbidity peaks, of 250 nephelometric turbidity units, coincided with these intratidal oscillations and could not be explained by bed friction since shear stress from mean flow did not exceed threshold criteria. High Reynolds stresses of ∼1 Nm⁻² did, however, exceed τcr and together with negative Reynolds fluxes indicate a net downward transport of material. Destratification of the water column induced by shear instabilities resulted in large overturns capable of moving in situ material towards the bed during intratidal oscillations and these turbidities were ∼10 times greater than those from bed-generated resuspension observed later during the flood tide

    Cost impact of procalcitonin-guided decision making on duration of antibiotic therapy for suspected early-onset sepsis in neonates

    Get PDF
    Abstract Backgrounds The large, international, randomized controlled NeoPInS trial showed that procalcitonin (PCT)-guided decision making was superior to standard care in reducing the duration of antibiotic therapy and hospitalization in neonates suspected of early-onset sepsis (EOS), without increased adverse events. This study aimed to perform a cost-minimization study of the NeoPInS trial, comparing health care costs of standard care and PCT-guided decision making based on the NeoPInS algorithm, and to analyze subgroups based on country, risk category and gestational age. Methods Data from the NeoPInS trial in neonates born after 34 weeks of gestational age with suspected EOS in the first 72 h of life requiring antibiotic therapy were used. We performed a cost-minimization study of health care costs, comparing standard care to PCT-guided decision making. Results In total, 1489 neonates were included in the study, of which 754 were treated according to PCT-guided decision making and 735 received standard care. Mean health care costs of PCT-guided decision making were not significantly different from costs of standard care (€3649 vs. €3616). Considering subgroups, we found a significant reduction in health care costs of PCT-guided decision making for risk category ‘infection unlikely’ and for gestational age ≥ 37 weeks in the Netherlands, Switzerland and the Czech Republic, and for gestational age < 37 weeks in the Czech Republic. Conclusions Health care costs of PCT-guided decision making of term and late-preterm neonates with suspected EOS are not significantly different from costs of standard care. Significant cost reduction was found for risk category ‘infection unlikely,’ and is affected by both the price of PCT-testing and (prolonged) hospitalization due to SAEs

    Number needed to treat with ursodeoxycholic acid therapy to prevent liver transplantation or death in primary biliary cholangitis

    Get PDF
    Objective: The clinical benefit of ursodeoxycholic acid (UDCA) in primary biliary cholangitis (PBC) has never been reported in absolute measures. The aim of this study was to assess the number needed to treat (NNT) with UDCA to prevent liver transplantation (LT) or death among patients with PBC. Methods: The NNT was calculated based on the untreated LT-free survival and HR of UDCA with respect to LT or death as derived from inverse probability of treatment weighting-adjusted Cox proportional hazard analyses within the Global PBC Study Group database. Results: We included 3902 patients with a median follow-up of 7.8 (4.1-12.1) years. The overall HR of UDCA was 0.46 (95% CI 0.40 to 0.52) and the 5-year LT-free survival without UDCA was 81% (95% CI 79 to 82). The NNT to prevent one LT or death within 5 years (NNT5y) was 11 (95% CI 9 to 13). Although the HR of UDCA was similar for patients with and without cirrhosis (0.33 vs 0.31), the NNT5y was 4 (95% CI 3 to 5) and 20 (95% CI 14 to 34), respectively. Among patients with low alkaline phosphatase (ALP) (≤2× the upper limit of normal (ULN)), intermediate ALP (2-4× ULN) and high ALP (>4× ULN), the NNT5y to prevent one LT or death was 26 (95% CI 15 to 70), 11 (95% CI 8 to 17) and 5 (95% CI 4 to 8), respectively. Conclusion: The absolute clinical efficacy of UDCA with respect to LT or death varied with baseline prognostic characteristics, but was high throughout. These findings strongly emphasise the incentive to promptly initiate UDCA treatment in all patients with PBC and may improve patient compliance

    Machine learning used to compare the diagnostic accuracy of risk factors, clinical signs and biomarkers and to develop a new prediction model for neonatal early-onset sepsis

    Get PDF
    Background: Current strategies for risk stratification and prediction of neonatal early-onset sepsis (EOS) are inefficient and lack diagnostic performance. The aim of this study was to use machine learning to analyze the diagnostic accuracy of risk factors (RFs), clinical signs and biomarkers and to develop a prediction model for culture-proven EOS. We hypothesized that the contribution to diagnostic accuracy of biomarkers is higher than of RFs or clinical signs. Study Design: Secondary analysis of the prospective international multicenter NeoPInS study. Neonates born after completed 34 weeks of gestation with antibiotic therapy due to suspected EOS within the first 72 hours of life participated. Primary outcome was defined as predictive performance for culture-proven EOS with variables known at the start of antibiotic therapy. Machine learning was used in form of a random forest classifier. Results: One thousand six hundred eighty-five neonates treated for suspected infection were analyzed. Biomarkers were superior to clinical signs and RFs for prediction of culture-proven EOS. C-reactive protein and white blood cells were most important for the prediction of the culture result. Our full model achieved an area-under-the-receiver-operating-characteristic-curve of 83.41% (±8.8%) and an area-under-the-precision-recall-curve of 28.42% (±11.5%). The predictive performance of the model with RFs alone was comparable with random. Conclusions: Biomarkers have to be considered in algorithms for the management of neonates suspected of EOS. A 2-step approach with a screening tool for all neonates in combination with our model in the preselected population with an increased risk for EOS may have the potential to reduce the start of unnecessary antibiotics

    First Focal Mechanisms of Marsquakes

    Get PDF
    Since February 2019, NASA's InSight lander is recording seismic signals on the planet Mars, which, for the first time, allows to observe ongoing tectonic processes with geophysical methods. A number of Marsquakes have been located in the Cerberus Fossae graben system in Elysium Planitia and further west, in the Orcus Patera depression. We present a first study of the focal mechanisms of three well-recorded events (S0173a, S0183a, S0235b) to determine the processes dominating in the source region. We infer for all three events a predominantly extensional setting. Our method is adapted to the case of a single, multicomponent receiver and based on fitting waveforms of P and S waves against synthetic seismograms computed for the initial crustal velocity model derived by the InSight team. We explore the uncertainty due to the single-station limitation and find that even data recorded by one station constrains the mechanisms (reasonably) well. For the events in the Cerberus Fossae region (S0173a, S0235b) normal faulting with a relatively steep dipping fault plane is inferred, suggesting an extensional regime mainly oriented E-W to NE-SW. The fault regime in the Orcus Patera region is not determined uniquely because only the P wave can be used for the source inversion. However, we find that the P and weak S waves of the S0183a event show similar polarities to the event S0173, which indicates similar fault regimes

    Number needed to treat with ursodeoxycholic acid therapy to prevent liver transplantation or death in primary biliary cholangitis

    Get PDF
    Objective: The clinical benefit of ursodeoxycholic acid (UDCA) in primary biliary cholangitis (PBC) has never been reported in absolute measures. The aim of this study was to assess the number needed to treat (NNT) with UDCA to prevent liver transplantation (LT) or death among patients with PBC. Methods: The NNT was calculated based on the untreated LT-free survival and HR of UDCA with respect to LT or death as derived from inverse probability of treatment weighting-adjusted Cox proportional hazard analyses within the Global PBC Study Group database. Results: We included 3902 patients with a median follow-up of 7.8 (4.1-12.1) years. The overall HR of UDCA was 0.46 (95% CI 0.40 to 0.52) and the 5-year LT-free survival without UDCA was 81% (95% CI 79 to 82). The NNT to prevent one LT or death within 5 years (NNT5y) was 11 (95% CI 9 to 13). Although the HR of UDCA was similar for patients with and without cirrhosis (0.33 vs 0.31), the NNT5y was 4 (95% CI 3 to 5) and 20 (95% CI 14 to 34), respectively. Among patients with low alkaline phosphatase (ALP) (≤2× the upper limit of normal (ULN)), intermediate ALP (2-4× ULN) and high ALP (>4× ULN), the NNT5y to prevent one LT or death was 26 (95% CI 15 to 70), 11 (95% CI 8 to 17) and 5 (95% CI 4 to 8), respectively. Conclusion: The absolute clinical efficacy of UDCA with respect to LT or death varied with baseline prognostic characteristics, but was high throughout. These findings strongly emphasise the incentive to promptly initiate UDCA treatment in all patients with PBC and may improve patient compliance

    Anti-Diarrheal Mechanism of the Traditional Remedy Uzara via Reduction of Active Chloride Secretion

    Get PDF
    BACKGROUND AND PURPOSE: The root extract of the African Uzara plant is used in traditional medicine as anti-diarrheal drug. It is known to act via inhibition of intestinal motility, but malabsorptive or antisecretory mechanisms are unknown yet. EXPERIMENTAL APPROACH: HT-29/B6 cells and human colonic biopsies were studied in Ussing experiments in vitro. Uzara was tested on basal as well as on forskolin- or cholera toxin-induced Cl(-) secretion by measuring short-circuit current (I(SC)) and tracer fluxes of (22)Na(+) and (36)Cl(-). Para- and transcellular resistances were determined by two-path impedance spectroscopy. Enzymatic activity of the Na(+)/K(+)-ATPase and intracellular cAMP levels (ELISA) were measured. KEY RESULTS: In HT-29/B6 cells, Uzara inhibited forskolin- as well as cholera toxin-induced I(SC) within 60 minutes indicating reduced active chloride secretion. Similar results were obtained in human colonic biopsies pre-stimulated with forskolin. In HT-29/B6, the effect of Uzara on the forskolin-induced I(SC) was time- and dose-dependent. Analyses of the cellular mechanisms of this Uzara effect revealed inhibition of the Na(+)/K(+)-ATPase, a decrease in forskolin-induced cAMP production and a decrease in paracellular resistance. Tracer flux experiments indicate that the dominant effect is the inhibition of the Na(+)/K(+)-ATPase. CONCLUSION AND IMPLICATIONS: Uzara exerts anti-diarrheal effects via inhibition of active chloride secretion. This inhibition is mainly due to an inhibition of the Na(+)/K(+)-ATPase and to a lesser extent to a decrease in intracellular cAMP responses and paracellular resistance. The results imply that Uzara is suitable for treating acute secretory diarrhea
    corecore