1,255 research outputs found

    Mixed integer nonlinear programming for Joint Coordination of Plug-in Electrical Vehicles Charging and Smart Grid Operations

    Full text link
    The problem of joint coordination of plug-in electric vehicles (PEVs) charging and grid power control is to minimize both PEVs charging cost and energy generation cost while meeting both residential and PEVs' power demands and suppressing the potential impact of PEVs integration. A bang-bang PEV charging strategy is adopted to exploit its simple online implementation, which requires computation of a mixed integer nonlinear programming problem (MINP) in binary variables of the PEV charging strategy and continuous variables of the grid voltages. A new solver for this MINP is proposed. Its efficiency is shown by numerical simulations.Comment: arXiv admin note: substantial text overlap with arXiv:1802.0445

    Model Predictive Control for Smart Grids with Multiple Electric-Vehicle Charging Stations

    Get PDF
    Next-generation power grids will likely enable concurrent service for residences and plug-in electric vehicles (PEVs). While the residence power demand profile is known and thus can be considered inelastic, the PEVs' power demand is only known after random PEVs' arrivals. PEV charging scheduling aims at minimizing the potential impact of the massive integration of PEVs into power grids to save service costs to customers while power control aims at minimizing the cost of power generation subject to operating constraints and meeting demand. The present paper develops a model predictive control (MPC)- based approach to address the joint PEV charging scheduling and power control to minimize both PEV charging cost and energy generation cost in meeting both residence and PEV power demands. Unlike in related works, no assumptions are made about the probability distribution of PEVs' arrivals, the known PEVs' future demand, or the unlimited charging capacity of PEVs. The proposed approach is shown to achieve a globally optimal solution. Numerical results for IEEE benchmark power grids serving Tesla Model S PEVs show the merit of this approach

    Coxiella burnetii Blocks Intracellular Interleukin-17 Signaling in Macrophages

    Get PDF
    Coxiella burnetii is an obligate intracellular bacterium and the etiological agent of Q fever. Successful host cell infection requires the Coxiella type IVB secretion system (T4BSS), which translocates bacterial effector proteins across the vacuole membrane into the host cytoplasm, where they manipulate a variety of cell processes. To identify host cell targets of Coxiella T4BSS effector proteins, we determined the transcriptome of murine alveolar macrophages infected with a Coxiella T4BSS effector mutant. We identified a set of inflammatory genes that are significantly upregulated in T4BSS mutant-infected cells compared to mock-infected cells or cells infected with wild-type (WT) bacteria, suggesting that Coxiella T4BSS effector proteins downregulate the expression of these genes. In addition, the interleukin-17 (IL-17) signaling pathway was identified as one of the top pathways affected by the bacteria. While previous studies demonstrated that IL-17 plays a protective role against several pathogens, the role of IL-17 during Coxiella infection is unknown. We found that IL-17 kills intracellular Coxiella in a dose-dependent manner, with the T4BSS mutant exhibiting significantly more sensitivity to IL-17 than WT bacteria. In addition, quantitative PCR confirmed the increased expression of IL-17 downstream signaling genes in T4BSS mutant-infected cells compared to WT- or mock-infected cells, including the proinflammatory cytokine genes Il1a, Il1b, and Tnfa, the chemokine genes Cxcl2 and Ccl5, and the antimicrobial protein gene Lcn2 We further confirmed that the Coxiella T4BSS downregulates macrophage CXCL2/macrophage inflammatory protein 2 and CCL5/RANTES protein levels following IL-17 stimulation. Together, these data suggest that Coxiella downregulates IL-17 signaling in a T4BSS-dependent manner in order to escape the macrophage immune response

    Max-min Rate Optimization of Low-Complexity Hybrid Multi-User Beamforming Maintaining Rate-Fairness

    Full text link
    A wireless network serving multiple users in the millimeter-wave or the sub-terahertz band by a base station is considered. High-throughput multi-user hybrid-transmit beamforming is conceived by maximizing the minimum rate of the users. For the sake of energy-efficient signal transmission, the array-of-subarrays structure is used for analog beamforming relying on low-resolution phase shifters. We develop a convexsolver based algorithm, which iteratively invokes a convex problem of the same beamformer size for its solution. We then introduce the soft max-min rate objective function and develop a scalable algorithm for its optimization. Our simulation results demonstrate the striking fact that soft max-min rate optimization not only approaches the minimum user rate obtained by max-min rate optimization but it also achieves a sum rate similar to that of sum-rate maximization. Thus, the soft max-min rate optimization based beamforming design conceived offers a new technique of simultaneously achieving a high individual quality-of-service for all users and a high total network throughput

    Diffusion limit for single-server retrial queues with renewal input and outgoing calls

    Get PDF
    This paper studies a single-server retrial queue with two types of calls (incoming and outgoing calls). Incoming calls arrive at the server according to a renewal process, and outgoing calls of N − 1 (N ≥ 2) categories occur according to N − 1 independent Poisson processes. Upon arrival, if the server is occupied, an incoming call joins a virtual infinite queue called the orbit, and after an exponentially distributed time in orbit enters the server again, while outgoing calls are lost if the server is busy at the time of their arrivals. Although M/G/1 retrial queues and their variants are extensively studied in the literature, the GI/M/1 retrial queues are less studied due to their complexity. This paper aims to obtain a diffusion limit for the number of calls in orbit when the retrial rate is extremely low. Based on the diffusion limit, we built an approximation to the distribution of the number of calls in orbit

    Genetic Effects on Bone Loss in Peri- and Postmenopausal Women: A Longitudinal Twin Study

    Get PDF
    This longitudinal twin study was designed to assess the heritability of bone loss in peri- and postmenopausal women. A sample of 724 female twins was studied. Baseline and repeat BMD measurements were performed. Results of genetic model-fitting analysis indicated genetic effects on bone loss account for similar to 40% of the between-individual variation in bone loss at the lumbar spine, forearm, and whole body. Introduction: BMD and bone loss are important predictors of fracture risk. Although the heritability of peak BMD is well documented, it is not clear whether bone loss is also under genetic regulation. This study was designed to assess the heritability of bone loss in peri- and postmenopausal women. Materials and Methods: A sample of 724 female twins (177 monozygotic [MZ] and 185 dizygotic [DZ] pairs), 45-82 yr of age, was studied. Each individual had baseline BMD measurements at the lumbar spine, hip, forearm, and total body by DXA and at least one repeat measure, on average 4.9 yr later. Change in BMD (Delta BMD) was expressed as percent of gain or loss per year. Intraclass correlation coefficients for ABMD were calculated for MZ and DZ pairs. Genetic model-fitting analysis was conducted to partition the total variance of ABMD into three components: genetic (G), common environment (C), and specific environment, including measurement error (E). The index of heritability was estimated as the ratio of genetic variance over total variance. Results: The mean annual Delta BMD was -0.37 +/- 1.43% (SD) per year at the lumbar spine, -0.27 +/- 1.32% at the total hip, -0.77 +/- 1.66% at the total forearm, -0.36 +/- 56% at the femoral neck, and -0.16 +/- 0.81% at the whole body. Intraclass correlation coefficients were significantly higher in MZ than in DZ twins for all studied parameters, except at the hip sites. Results of genetic model-fitting analysis indicated that the indices of heritability for ABMD were 0.38, 0.49, and 0.44 for the lumbar spine, total forearm, and whole body, respectively. However, the genetic effect on ABMD at all hip sites was not significant. Conclusions: These data suggest that, although genetic effects on bone loss with aging are less pronounced than on peak bone mass, they still account for similar to 40% of the between-individual variation in bone loss for the lumbar spine, total forearm, and whole body in peri- and postmenopausal women. These findings are relevant for studies aimed at identification of genes that are involved in the regulation of bone loss

    Solvability of singular integral equations with rotations and degenerate kernels in the vanishing coefficient case

    Get PDF
    By means of Riemann boundary value problems and of certain convenient systems of linear algebraic equations, this paper deals with the solvability of a class of singular integral equations with rotations and degenerate kernel within the case of a coefficient vanishing on the unit circle. All the possibilities about the index of the coefficients in the corresponding equations are considered and described in detail, and explicit formulas for their solutions are obtained. An example of application of the method is shown at the end of the last section

    The phase of the sigma -> pi-pi amplitude in J/Psi -> omega-pi-pi

    Full text link
    The phase variation of the sigma -> pi-pi amplitude is accurately determined as a function of mass from BES II data for J/Psi -> omega-pi-pi. The determination arises from interference with the strong b1(1235)-pi amplitude. The observed phase variation agrees within errors with that in pi-pi elastic scattering.Comment: 10 pages, 4 figures, Euro. Phys. J C (in press
    corecore