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1. Introduction

The theory of singular integral equations with shift (SIES) and in particular that of

Cauchy singular integral operators with shift (SIOS) were studied a long time ago as
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they are applied in many fields of mathematics and physics. Particularly, the theory

of SIES and boundary value problems for analytic functions founded by Hilbert and

Poincaré are particularly applied in many theories such as the theory of the limit

problems for differential equations with second order partial derivatives of mixed

type, the theory of the cavity currents in an ideal liquid, the theory of infinitesimal

bonds of surfaces with positive curvature, the contact theory of elasticity, and that

of physics of plasma. Moreover, the theory of SIOS contributes theoretically in a

significant way not only to the theory of Fredholm operators (Noetherian opera-

tors according to the terminology of Russian-language literature) and to that of

one-sided invertible operators but also to the theory of general and abstract opera-

tors within C∗-algebras (see [1,6,9,14,15,25,26,28,29] and references therein). In the

previous decades, the theory of SIES has been considered an attractive object of

study due to a great variety of reasons. Vekua’s paper [37] was by its own means

an initial motivation, and it is considered to be the first paper in which SIES were

considered.

In the case where no shifts or rotations arise, the theory is already rather com-

plete. For instance, note that the Fredholm theory of singular integral operators

with piecewise continuous coefficients on composed Lyapunov curves acting on

Hölder spaces (with power weights) was already constructed by R. Duduchava in

the early seventies [11,12,13] (cf. also the book by I. Gohberg and N. Krupnik [16]).

In recent years, many papers devoted to particular investigations and containing

solutions in explicit form of SIES have been published (see [3,4,5,8,17,18,19,20,21]).

The most general and important class among the SIES reducible to Riemann bound-

ary value problems that can provide explicit solutions in a certain sense, is that of

singular integral equations with a Carleman shift. However, there are only a few

special types of such SIES which are possible to solve completely in some extent

or by means of Riemann boundary value problems (see [28,36]). Anyway, abstract

normalization procedures are known for obtaining the solutions of consequent nor-

malized problems of singular integral operators with Carleman shifts and degenerate

coefficients within the framework of Lebesgue spaces on the unit circle (or the real

line); cf. [10,22,23,24,33].

In this paper, we study the solvability of a class of singular integral equations

with rotations on the unit circle and with degenerate kernel in the case of a van-

ishing coefficient (and where the rotation is considered as a Carleman shift). This

leads to an advance of the knowledge since we obtain consequent solutions for the

problems in analysis which previously where only known for cases where no degen-

erate coefficients were occurring. Anyway, all this happens subjected to the known

condition that a certain difference between the square of the coefficients (after an

action of the rotations) do not vanish – which is in fact a known necessary condition

for the existence of solutions. Within our method we will face a consequent linear

boundary value problem for analytic functions – to which type the pioneering works

of Riemann, Hilbert, Haseman, Carleman, Muskhelishvili, Gakhov and Vekua gave

significant main initial contributions.
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In view to formulate our initial problem we will now fix some notation. Let

Γ = {t ∈ C : |t| = 1} and X = Hµ(Γ), with 0 < µ < 1, be the Hölder space on Γ.

Additionally, we will consider the following operators in X:

(Wφ)(t) = φ(ε1t), (Sφ)(t) =
1

πi
p.v.

∫
Γ

φ(τ)

τ − t
dτ,

(1.1)

(Mφ)(t) =
1

πi

∫
Γ

m(τ, t)φ(τ)dτ,

where ε1 = exp( 2πin ), n ∈ N , εk = ε1
k and m(τ, t) is a given function satisfying the

Hölder condition in (τ, t) ∈ Γ× Γ. Since the operator W is an involution of degree

n, one can construct the projections Pj (j = 1, . . . , n) satisfying the following

identities: 
Pj =

1
n

∑n
k=1 ε

n−1−k
j W k+1, j = 1, 2, . . . , n,

PiPj = δijPj , i, j = 1, . . . , n,

W k =
∑n

j=1 ε
k
jPj , k = 1, . . . , n,

P1 + P2 + · · ·+ Pn−1 + Pn = I,

(1.2)

where δij is the Kronecker symbol (see [8,34]).

We are now in a position to consider the main object of the present work in the

form of the following singular integral equation (in X), which cannot be reduced

to a two-term boundary value problem (see [28]),

a(t)φ(t) + b(t)[(S +M)Pℓφ](t) +
m∑
j=1

1

πi

∫
Γ

aj(t)bj(τ)φ(τ)dτ = f(t), (1.3)

where a, b, f, aj , bj ∈ X (j = 1, 2, . . . ,m) are given and S,M,Pℓ (1 ≤ ℓ ≤ n) are

the operators defined in (1.1)–(1.2). In the general case of Carleman shift W , the

equation of the form (1.3) attracted the attention of many authors. Namely, under

the assumption that the coefficient a(t) does not vanish on Γ, the papers [3,4,7,8,

28,31] studied the solvability and obtained explicit solutions of their corresponding

equations (1.3) by means of Riemann boundary value problems.

Our main goal is to analyse the solvability and obtain eventual solutions of (1.3)

when the function-coefficient a(t) vanishes on Γ in the sense that it has isolated

zero-points, i.e.

a(t) =

s∏
j=1

(t− αj)
rju(t), (1.4)

where αj ∈ Γ, rj (j = 1, 2, . . . , s) are positive integers and u(t) is a non-vanishing

function on Γ. Without loss of generality we may assume from now on that u(t) ≡ 1.



4 L. P. Castro, E. M. Rojas, S. Saitoh, N. M. Tuan, P. D. Tuan

2. Some lemmas and preparing results

In order to state the main theorems, we need some preliminary and technical results.

For every a ∈ X we write (Kaφ)(t) = a(t)φ(t).

Lemma 2.1. ([34], pp. 203) Suppose that a ∈ X is fixed. Then for every pair

(k, j), k, j ∈ {1, 2, . . . , n} there exists an element akj ∈ X such that PkKaPj =

Kakj
Pj ; namely,

akj(t) =
1

n

n∑
ν=1

εj−k
ν+1a(εν+1t). (2.1)

Lemma 2.2. ([34]) Let a ∈ X be fixed. Then for every pair (k, j), k, j ∈
{1, 2, . . . , n}, (1.2) yields

PkKakj
= Kakj

Pj ,

where akj(t) is defined by (2.1).

We set

Ω0 = {αi, i = 1, 2, . . . , s},
Ω = {tiµ = ε−1

µ+1αi, µ = 1, 2, . . . , n; i = 1, 2, . . . , s}.

In the sequel, let
d

dt
denote the arc length derivative operation on Γ. Addition-

ally, let us denote by C(Γ) the set of all continuous functions on Γ, and by Ck(Γ)

the set of all functions which together with their derivatives (with respect to the

arc length) up to the k-order (k ∈ N) belong to C(Γ). For every g ∈ Ck(Γ), we use

the following notation {
g(t)

}
(k,t0)

:=
dk

dtk
g(t)

∣∣∣∣
t=t0

.

For g ∈ Ck(Γ) given, we write:

g∗(t) = g(t)

n∏
µ=1

µ̸=n−1

a(εµ+1t),

g∗k(t) = Pkg
∗(t),

where a(t) is given by (1.4) with u(t) ≡ 1, and Pk is the projection as in (1.2).

Obviously, a ∈ Cq(Γ) for q = 0, 1, . . . , ri − 1.

Lemma 2.3. Suppose g ∈ Cq(Γ); q = 0, 1, . . . , ri − 1. Within this assumption,{
g(t)

}
(q,αi)

= 0 for all αi ∈ Ω0 if and only if{
g∗k(t)

}
(q,tiµ)

= 0 for all k = 1, 2, . . . , n and tiµ ∈ Ω.
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Proof. Suppose that
{
g(t)

}
(q,αi)

= 0, for all αi ∈ Ω0, q = 0, 1, . . . , ri − 1. This

implies
{
g∗(t)

}
(q,tiµ)

= 0, for all tiµ ∈ Ω, q = 0, 1, . . . , ri−1. Hence,
{
g∗k(t)

}
(q,tiµ)

=

0, for all tiµ ∈ Ω, q = 0, 1, . . . , ri − 1; k = 1, 2, . . . , n.

Conversely, suppose that
{
g∗k(t)

}
(q,tiµ)

= 0, for all tiµ ∈ Ω, q = 0, 1, . . . , ri −
1; k = 1, 2, . . . , n. It follows that{

n∑
k=1

g∗k(t)

}
(q,tiµ)

= 0, for all tiµ ∈ Ω, q = 0, 1, . . . , ri − 1.

On the other hand,

n∑
k=1

g∗k(t) =

n∑
k=1

1

n

n∑
j=1

εn−1−j
k g(εj+1t)

n∏
µ=1
µ̸=j

a(εµ+1t)

=

n∑
j=1

[
1

n

n∑
k=1

εn−1−j
k

]
g(εj+1t)

n∏
µ=1
µ̸=j

a(εµ+1t)

= g(t)

n∏
µ=1

µ̸=n−1

a(εµ+1t) = g∗(t).

We then have{
g∗(t)

}
(q,tiµ)

= 0, for all tiµ ∈ Ω, q = 0, 1, . . . , ri − 1.

Hence,

{g(t)}(q,αi) = 0, for all αi ∈ Ω0, q = 0, 1, . . . , ri − 1,

and the proof is complete.

Lemma 2.4. Let α ∈ Γ be fixed. Assume that h ∈ X is a function having a

continuous analytic extension in a neighborhood of Γ. Then the equation

(t− α)rφ(t) = h(t), (2.2)

has a solution in X if and only if the following conditions are satisfied

{h(t)}(q,α) = 0, for all q = 0, 1, . . . , r − 1. (2.3)

If this is the case, then the solution of equation (2.2) is given by

φ(t) =


h(t)

(t− α)r
if t ̸= α

{h(t)}(r,α)
r!

if t = α.

(2.4)

Moreover, the solution also has an analytic extension in a neighborhood of Γ.
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Proof. Suppose that equation (2.2) has a solution φ0 ∈ X, i.e.

(t− α)rφ0(t) = h(t)

for all t ∈ Γ. Expanding the function h in a neighborhood of α ∈ Γ in a Taylor

series, we have

h(z) = h(α) +
r−1∑
k=1

(z − α)k

k!
{h(z)}(k,α) +

(z − α)r

r!
{h(z)}(r,ξ),

where z and ξ are in a neighborhood of Γ. Note that the notations {h(z)}(k,α) and
{h(t)}(k,α) have the same meaning as h is an analytic function in a neighborhood

of Γ. For t ∈ Γ,

(t− α)rφ0(t) = h(α) +
r−1∑
k=1

(t− α)k

k!
{h(t)}(k,α) +

(t− α)r

r!
{h(t)}(r,ξ) (2.5)

where ξ ∈ Γ. Deducing inductively we obtain {h(t)}(q,α) = 0 for q = 0, 1, . . . r − 1.

Thus, the condition (2.3) is necessary.

Conversely, suppose that the condition (2.3) is satisfied. We have to prove that

the function φ defined by (2.4) fulfills the Hölder condition. By the assumption we

have

h(z) = h(α) +
r−1∑
k=1

(z − α)k

k!
{h(z)}(k,α) +

(z − α)r

r!
{h(z)}(r,ξ), (2.6)

where z, ξ are in a neighborhood of Γ. From the condition (2.3), we derive

h(z) =
(z − α)r

r!
{h(z)}(r,ξ). (2.7)

We deduce that the function φ defined by (2.4) is Hölder continuous on the curve

Γ. Therefore, φ ∈ X.

Thanks to the analytic extension of h we assert that the function φ as in (2.4)

also has an analytic extension in a neighborhood of Γ. The proof is complete.

Write r := max
1≤i≤s

{ri}. Note that αi ∈ Γ are fixed points for i = 1, 2, . . . , s. The

following lemma is a direct consequence of Lemma 2.4.

Lemma 2.5. Assume that the function h ∈ X has a continuous analytic extension

in a neighborhood of Γ. The equation

s∏
i=1

(t− αi)
riφ(t) = h(t), (2.8)

has a solution if and only if the following conditions are fulfilled

{h(t)}(q,αi) = 0, for all i = 1, 2, . . . s; q = 0, 1, . . . , ri − 1. (2.9)
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If this is the case, then equation (2.8) has a unique solution given by

φ(t) =



h(t)
s∏

i=1

(t− αi)ri
if t ̸= αj , αj ∈ Ω0,

{h(t)}(rj ,αj)

rj !
n∏

i=1
i ̸=j

(αj − αi)
ri

if t = αj , αj ∈ Ω0.

(2.10)

Moreover, the solution also has an analytic extension in a neighborhood of Γ.

3. Reducing equation (1.3) to a system of singular integral

equations

Denote by Nbj (j = 1, . . . ,m) the linear functionals on X that are defined as

follows

(Nbjφ) =
1

πi

∫
Γ

bj(τ)φ(τ)dτ, for any φ ∈ X.

Put (Nbjφ) = λj , j = 1, 2, . . . ,m. We reduce equation (1.3) to the following prob-

lem: find solutions φ of equation

a(t)φ(t) + b(t)[(S +M)Pℓφ](t) = f(t)−
m∑
j=1

λjaj(t), (3.1)

depending on the parameters λ1, . . . , λm subjected to

(Nbjφ) = λj , j = 1, 2, . . . ,m. (3.2)

Lemma 3.1. (see [34]) Suppose that the function m(τ, t) satisfies the condition

m(τ, t) = m(ε1τ, t) = ε−1
1 m(τ, ε1t). Then φ ∈ X is a solution of (3.1) if and only

if {φk = Pkφ, k = 1, . . . , n} is a solution of the following system

a∗(t)φk(t) + b∗kℓ(t)[(S +M)φℓ](t) = f∗
k (t), k = 1, 2, . . . , n, (3.3)

where

a∗(t) =
n∏

j=1

a(εj+1t),

b∗kℓ(t) =
1

n

n∑
j=1

εℓ−k
j+1b(εj+1t)

n∏
µ=1
µ̸=j

a(εµ+1t), (3.4)

f∗
k (t) =

1

n

n∑
j=1

εn−1−j
k

[
f(εj+1t)−

m∑
ν=1

λνaν(εj+1t)

]
n∏

µ=1
µ̸=j

a(εµ+1t).
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Lemma 3.2. (cf. [34]) If (φ1, φ2, . . . , φn) is a solution of the system (3.3), then

(P1φ1, P2φ2, . . . , Pnφn) is also a solution of it.

Theorem 3.1. (see [34]) Suppose that the function m(τ, t) satisfies the assumption

of Lemma 3.1.

(1) If (φ1, φ2, . . . , φn) is a solution of (3.3), then

φ =
n∑

k=1

Pkφk,

is a solution of equation (3.1).

(2) If φ ∈ X is a solution of (3.1) then (P1φ,P2φ, . . . , Pnφ) is a solution of (3.3).

Theorem 3.2. Suppose that the function m(τ, t) satisfies the assumption of

Lemma 3.1. Assume that each one of the functions f and b has an analytic ex-

tension in a neighborhood of Γ. Then equation (3.1) has a solution in X if only if

the ℓ-th equation of (3.3),

a∗(t)φℓ(t) + b∗ℓℓ(t)[(S +M)φℓ](t) = f∗
ℓ (t), (3.5)

has a solution φℓ(t) ∈ Xℓ = PℓX satisfying the conditions{
f(t)−

m∑
ν=1

λνaν(t)− b(t)[(S +M)φℓ](t)

}
(q,αi)

= 0, (3.6)

where αi ∈ Ω0, i = 1, 2, . . . , s; q = 0, 1, . . . , ri − 1. Moreover, if φℓ is a solution

of equation (3.5) satisfying the conditions (3.6), then equation (3.1) has a solution

given by

φ(t) =



f(t)−
m∑

ν=1
λνaν(t)− b(t)[(S +M)Pℓφℓ](t)

a(t)
if t ̸= αi, αi ∈ Ω0,

{
f(t)−

m∑
ν=1

λνaν(t)− b(t)[(S +M)Pℓφℓ](t)

}
(rj ,αj)

rj !
s∏

i=1
i̸=j

(αj − αi)
ri

if t = αj , αj ∈ Ω0.

(3.7)

Proof. It follows from Lemma 3.1 that if φ ∈ X is a solution of (3.1), then

(P1φ,P2φ, . . . , Pnφ) is a solution of system (3.3). It means that φℓ = Pℓφ ∈ Xℓ is

a solution of the ℓ-th equation of (3.3) which is equation (3.5). Moreover, for any

k = 1, 2, . . . , n, φk is a solution of the equation

a∗(t)φk(t) = f∗
k (t)− b∗kℓ(t)[(S +M)φℓ](t). (3.8)

The function in the left-hand side of (3.8) has zeros of order ri at tiµ = ε−1
µ+1αi ∈ Ω.

By using the assumptions and Lemmas 2.3, 2.4, and 2.5 we derive that condition

(3.6) is necessary.
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Conversely, if φℓ(t) ∈ Xℓ is a solution of (3.5) satisfying (3.6), then by

Lemma 2.3,{
f∗
k (t)− b∗kℓ(t)[(S +M)φℓ](t)

}
(q,tiµ)

= 0, for all k = 1, 2, . . . , n ,

where tiµ ∈ Ω, i = 1, 2, . . . , s; q = 0, 1, . . . , ri − 1. By Lemma 2.5, the equation

a∗(t)φk(t) = f∗
k (t)− b∗kℓ(t)[(S +M)φℓ](t), for some k = 1, 2, . . . , n,

has a solution φk ∈ X.

Due to Theorem 3.1, φ(t) =
n∑

k=1

Pkφk(t) is a solution of (3.1). Moreover, it is

easily seen that Pℓφ = Pℓφℓ = φℓ. From equation (3.1), we obtain

a(t)φ(t) = f(t)−
m∑
j=1

λjaj(t)− b(t)[(S +M)φℓ](t).

By Lemma 2.5 we derive that (3.1) has a solution φ determined by (3.7). The proof

is complete.

Remark 3.1. Suppose that f, g ∈ X. It is clear that if f(t) = g(t) for all t ∈
Γ\{α1, α2, . . . , αs} then f(t) = g(t) for all t ∈ Γ. Thanks to this fact, instead of

(3.7), in the sequel we simply write

φ(t) =

f(t)−
m∑

ν=1
λνaν(t)− b(t)[(S +M)Pℓφℓ](t)

a(t)
. (3.9)

Lemma 3.3. The equation (3.5) has a solution in Xℓ if and only if it has a solution

in X. Moreover, if φ ∈ X is a solution of (3.5), then φℓ = Pℓφ is a solution of

(3.5) in Xℓ.

Proof. By Lemma 2.2, b∗ℓℓ is invariant with respect to Pℓ and the operator S +M

commutes with Pℓ. Suppose that φ ∈ X is a solution of (3.5). Applying the operator

Pℓ to both sides of (3.5), we obtain φℓ = Pℓφ which is a solution of (3.5).

4. The solvability of equation (3.5)

We set

D+ = {z ∈ C : |z| < 1}, D− = {z ∈ C : |z| > 1}.

Denote by H(D+) and H(D−) the sets of analytic functions in D+ and D−, re-

spectively. Consider the equation (3.5)

a∗(t)φℓ(t) + b∗ℓℓ(t)[(S +M)φℓ](t) = f∗
ℓ (t).

Suppose that the function

M(τ, t) =
b∗ℓℓ(t)

a∗(t) + b∗ℓℓ(t)
m(τ, t) (4.1)
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admits an analytic extension onto D+ in each one of variables τ and t. Assume that

m(τ, t) = m(ε1τ, t) = ε−1
1 m(τ, ε1t). Put

Φℓ(z) =
1

2πi

∫
Γ

φℓ(τ)

τ − z
dτ.

According to the Sokhotsky-Plemelj formula, we have

φℓ(t) = Φ+
ℓ (t)− Φ−

ℓ (t),

(Sφℓ)(t) = Φ+
ℓ (t) + Φ−

ℓ (t). (4.2)

So, we reduce equation (3.5) to the following boundary problem: find a sectionally

analytic function Φℓ(z) on D+, D− which vanishes at infinity and satisfies:

Φ+
ℓ (t) +

b∗ℓℓ(t)

a∗(t) + b∗ℓℓ(t)
M [Φ+

ℓ (t)− Φ−
ℓ (t)]

=
a∗(t)− b∗ℓℓ(t)

a∗(t) + b∗ℓℓ(t)
Φ−

ℓ (t) +
f∗
ℓ (t)

a∗(t) + b∗ℓℓ(t)
. (4.3)

Using Lemma 14.1 in [30], we have MΦ+
ℓ (t) = 0,MΦ−

ℓ (t) ∈ H(D+). Write{
Φ+(t) = Φ+

ℓ (t)−
b∗ℓℓ(t)

a∗(t)+b∗ℓℓ(t)
MΦ−

ℓ (t),

Φ−(t) = Φ−
ℓ (t).

(4.4)

Instead of finding function Φℓ(z), we determine a sectionally analytic function Φ(z)

on D+, D− that vanishes at infinity and satisfies:

Φ+(t) = G(t)Φ−(t) + g(t), (4.5)

where

G(t) =
a∗(t)− b∗ℓℓ(t)

a∗(t) + b∗ℓℓ(t)
, g(t) =

f∗
ℓ (t)

a∗(t) + b∗ℓℓ(t)
.

Suppose that a∗2(t) − b∗2ℓℓ (t) does not vanish on Γ. Then we have G, g ∈ X and

G(t) ̸= 0 for any t ∈ Γ. Put

κ = IndG(t) =
1

2πi

∫
Γ

d lnG(t),

Γ(z) =
1

2πi

∫
Γ

ln[τ−κG(τ)]

τ − z
dτ, (4.6)

X+(z) = eΓ
+(z), X−(z) = z−κeΓ

−(z).

Using the results proved in [15] and [27], we get the following cases:

(1) If κ > 0, then the problem (4.5) has general solutions

Φ(z) = X(z)[Ψ(z) + Pκ−1(z)], (4.7)
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where

Ψ(z) =
1

2πi

∫
Γ

f∗
ℓ (τ)

X+(τ)(a∗(τ) + b∗ℓℓ(τ))

dτ

τ − z
, (4.8)

and

Pκ−1(z) = p1 + p2z + · · ·+ pκz
κ−1 (4.9)

is a polynomial of degree κ− 1 with arbitrary complex coefficients.

(2) If κ ≤ 0, then the necessary condition for problem (4.5) to be solvable is∫
Γ

g(τ)

X+(τ)
τ j−1dτ = 0, j = 1, 2, . . . ,−κ.

Equivalently, ∫
Γ

f∗
ℓ (τ)τ

j−1

X+(τ)(a∗(τ) + b∗ℓℓ(τ))
dτ = 0, j = 1, 2, . . . ,−κ. (4.10)

If condition (4.10) is satisfied, then the solution is uniquely given by

Φ(z) =
X(z)

2πi

∫
Γ

g(τ)

X+(τ)

dτ

τ − z
= X(z)Ψ(z).

Now we get back to equation (3.5).

Theorem 4.1. Suppose that a∗2(t) − b∗2ℓℓ (t) does not vanish on Γ, the function

M(τ, t) (determined by (4.1)) admits an analytic continuation on D+ in each of

the variables τ and t, and that m(τ, t) = m(ε1τ, t) = ε−1
1 m(τ, ε1t) is satisfied.

(1) If κ > 0, then the equation (3.5) has solutions φℓ(t) which satisfy the

following formula:

(S+M)φℓ(t) = X+(t)[Ψ+(t)+Pκ−1(t)]−
a∗(t)

a∗(t) + b∗ℓℓ(t)
MX−(t)[Ψ−(t)+Pκ−1(t)]

+X−(t)[Ψ−(t) + Pκ−1(t)]. (4.11)

(2) If κ ≤ 0, then the equation (3.5) is solvable if the condition (4.10) is

satisfied. In this case, the equation (3.5) has a unique solution which satisfies the

formula (4.11), where Pκ−1(t) ≡ 0.

Proof. (1) From the assumption, it follows that the problem (4.5) has a solu-

tion Φ(t) determined by (4.7). Therefore, the equation (3.5) has a solution φℓ(t).

Moreover, from the Sokhotsky-Plemelj formulas (4.2) and (4.4), we get

(Sφℓ)(t) = Φ+(t) +
b∗ℓℓ(t)

a∗(t) + b∗ℓℓ(t)
(MΦ−)(t) + Φ−(t)

= X+(t)[Ψ+(t) + Pκ−1(t)] +
b∗ℓℓ(t)

a∗(t) + b∗ℓℓ(t)
MX−(t)[Ψ−(t)

+Pκ−1(t)] +X−(t)[Ψ−(t) + Pκ−1(t)],

(Mφℓ)(t) = M(Φ+(t)− Φ−(t)) = −MX−(t)[Ψ−(t) + Pκ−1(t)].
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Hence, (S +M)φℓ(t) is determined by (4.11).

(2) This case is proved similarly to the case (1), and therefore the corresponding

details are here omitted.

We would like to observe that the conditions imposed on the function M are

in a sense a restriction which is here needed in view to obtain the corresponding

solutions upon the use of the auxiliary equations exposed above.

5. The solvability of equation (1.3)

Theorem 3.2 and Theorem 4.1 show that if a∗2(t) − b∗2ℓℓ (t) does not vanish in Γ,

the assumptions of Theorem 4.1 and the condition (3.6) are satisfied, then the

equation (3.1) is solvable in a closed form. So, a relevant question to our problem

is now considered in here: will a solution of (3.1) be always a solution of (1.3)?

Unfortunately, the answer to this question is negative.

In this section, we shall show that a solution of (3.1) has to satisfy condition

(3.2) to be a solution of equation (1.3).

Consider the following cases:

(1) If κ > 0 then from Theorem 3.2 and Theorem 4.1, we have solutions of

(3.1) which are determined by (3.9) where (S +M)φℓ(t) is given by (4.11). From

(3.4) and (4.8), we get

Ψ(z) =
1

2πi

∫
Γ

1
n

∑n
j=1 ε

n−1−j
ℓ f(εj+1τ)

∏n
µ=1
µ̸=j

a(εµ+1τ)

X+(τ)(a∗(τ) + b∗ℓℓ(τ))

dτ

τ − z

− 1

2πi

∫
Γ

1
n

∑n
j=1 ε

n−1−j
ℓ

∑m
ν=1 λνaν(εj+1τ)

∏n
µ=1
µ̸=j

a(εµ+1τ)

X+(τ)(a∗(τ) + b∗ℓℓ(τ))

dτ

τ − z

= Ψ1(z)−
m∑

ν=1

λνAν(z), (5.1)

where

Ψ1(z) =
1

2πi

∫
Γ

1
n

∑n
j=1 ε

n−1−j
ℓ f(εj+1τ)

∏n
µ=1
µ̸=j

a(εµ+1τ)

X+(τ)(a∗(τ) + b∗ℓℓ(τ))

dτ

τ − z
,

Aν(z) =
1

2πi

∫
Γ

1
n

∑n
j=1 ε

n−1−j
ℓ aν(εj+1τ)

∏n
µ=1
µ̸=j

a(εµ+1τ)

X+(τ)(a∗(τ) + b∗ℓℓ(τ))

dτ

τ − z
. (5.2)

Substituting (4.9) and (5.1) into (4.11), we obtain

(S +M)φℓ(t) = X+(t)Ψ+
1 (t) +X−(t)Ψ−

1 (t)−
a∗(t)

a∗(t) + b∗ℓℓ(t)
MX−(t)Ψ−

1 (t)

−
m∑

ν=1

λν [X
+(t)A+

ν (t) +X−(t)A−
ν (t)] +

m∑
ν=1

λν
a∗(t)

a∗(t) + b∗ℓℓ(t)
MX−(t)A−

ν (t)
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+
κ∑

j=1

pjt
j−1[X+(t) +X−(t)]−

κ∑
j=1

pj

[
a∗(t)

a∗(t) + b∗ℓℓ(t)
MX−(t)tj−1

]
. (5.3)

Thus, we can rewrite (3.9) in the form

φ(t) =
f(t)− b(t)Pℓ[X

+(t)Ψ+
1 (t) +X−(t)Ψ−

1 (t)]

a(t)

+
b(t)Pℓ

[
a∗(t)

a∗(t)+b∗ℓℓ(t)
MX−(t)Ψ−

1 (t)
]

a(t)

−
m∑

ν=1

λν
aν(t)− b(t)Pℓ [X

+(t)A+
ν (t) +X−(t)A−

ν (t)]

a(t)

−
m∑

ν=1

λν

b(t)Pℓ

[
a∗(t)

a∗(t)+b∗ℓℓ(t)
MX−(t)A−

ν (t)
]

a(t)

−
κ∑

j=1

pj
b(t)Pℓ

[
tj−1[X+(t) +X−(t)]

]
a(t)

+
κ∑

j=1

pj
b(t)Pℓ

[
a∗(t)

a∗(t)+b∗ℓℓ(t)
MX−(t)tj−1

]
a(t)

, (5.4)

where X(z), Ψ1(z), A1(z), . . . , Am(z) are determined by (4.6), (5.2) and p1, . . . , pκ
are arbitrary.

The function φ is a solution of the equation (1.3) if it satisfies the condition

(3.2), that is

(Nbkφ)(t) = λk, k = 1, . . . ,m.

Substituting (5.4) into the condition (3.2), we obtain

λk = dk −
m∑

ν=1

λνekν −
κ∑

j=1

pjgkj , k = 1, 2, . . . ,m, (5.5)

where

dk = Nbk

(
f(t)− b(t)Pℓ[X

+(t)Ψ+
1 (t) +X−(t)Ψ−

1 (t)]

a(t)

)

+Nbk

b(t)Pℓ[
a∗(t)

a∗(t)+b∗ℓℓ(t)
MX−(t)Ψ−

1 (t)]

a(t)

 , (5.6)

ekν = Nbk

(
aν(t)− b(t)Pℓ[X

+(t)A+
ν (t) +X−(t)A−

ν (t)]

a(t)

)

+Nbk

b(t)Pℓ[
a∗(t)

a∗(t)+b∗ℓℓ(t)
MX−(t)A−

ν (t)]

a(t)

 , (5.7)
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gkj = Nbk

(
b(t)Pℓt

j−1[X+(t) +X−(t)]

a(t)

)

−Nbk

b(t)Pℓ[
a∗(t)

a∗(t)+b∗ℓℓ(t)
MX−(t)tj−1]

a(t)

 . (5.8)

Put

Λ =


λ1

λ2

...

λm


m×1

, P =


p1
p2
...

pκ


κ×1

, D =


d1
d2
...

dm


m×1

, (5.9)

E =


e11 e12 . . . e1m
e21 e22 . . . e2m
...

...
. . .

...

em1 em2 . . . emm


m×m

, G =


g11 e12 . . . g1κ
g21 g22 . . . g2κ
...

...
. . .

...

gm1 gm2 . . . gmκ


m×κ

. (5.10)

Now we write (5.5) in the form of a matrix condition

(I + E)Λ = D −GP, (5.11)

where I is the unit matrix. On the other hand, substituting (5.3) into (3.6), we get{
f(t)− b(t)[X+(t)Ψ+

1 (t) +X−(t)Ψ−
1 (t)] + b(t)

a∗(t)

a∗(t) + b∗ℓℓ(t)
MX−(t)Ψ−

1 (t)

−
m∑

ν=1

λν

(
aν(t)− b(t)[X+(t)A+

ν (t) +X−(t)A−
ν (t)]

)
−

m∑
ν=1

λνb(t)
a∗(t)

a∗(t) + b∗ℓℓ(t)
MX−(t)A−

ν (t)−
κ∑

j=1

pjb(t)t
j−1[X+(t) +X−(t)]

+
κ∑

j=1

pjb(t)
a∗(t)

a∗(t) + b∗ℓℓ(t)
MX−(t)tj−1

}
(q,αi)

= 0, (5.12)

where αi ∈ Ω0, q = 0, 1, . . . , ri − 1. Put

bqi =

{
f(t)− b(t)[X+(t)Ψ+

1 (t) +X−(t)Ψ−
1 (t)]

+b(t)
a∗(t)

a∗(t) + b∗ℓℓ(t)
MX−(t)Ψ−

1 (t)

}
(q,αi)

,

uν
qi =

{
aν(t)− b(t)[X+(t)A+

ν (t) +X−(t)A−
ν (t)]
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+b(t)
a∗(t)

a∗(t) + b∗ℓℓ(t)
MX−(t)A−

ν (t)

}
(q,αi)

,

vjqi =

{
b(t)tj−1[X+(t) +X−(t)]− b(t)

a∗(t)

a∗(t) + b∗ℓℓ(t)
MX−(t)tj−1

}
(q,αi)

.

B =



b11
b21
...

br11
b12
...

brss


η×1

, U =



u1
11 u2

11 . . . um
11

u1
21 u2

21 . . . um
21

...
...

. . .
...

u1
r11 u2

r11 . . . um
r11

u1
12 u2

12 . . . um
12

...
...

. . .
...

u1
rss u2

rss . . . um
rss


η×m

, (5.13)

V =



v111 v211 . . . vκ11
v121 v221 . . . vκ21
...

...
. . .

...

v1r11 v2r11 . . . vκr11
v112 v212 . . . vκ12
...

...
. . .

...

v1rss v2rss . . . vκrss


η×κ

, where η =

s∑
i=1

ri. (5.14)

We write (5.12) in the form of a matrix condition

UΛ = B − V P. (5.15)

Combining (5.11) and (5.15), we can say that the function φ determined by (3.9)

is a solution of (1.3) if and only if (λ1, λ2, . . . , λm) satisfy the following matrix

condition

(
I + E

U

)
(m+η)×m

× Λ =

(
D

B

)
(m+η)×1

−
(
G

V

)
(m+η)×κ

× P. (5.16)

(2) If κ ≤ 0 then from Theorem 3.2 and Theorem 4.1 it follows that the equation

(3.1) has solutions if and only if the condition (4.10) satisfied. If this is the case,



16 L. P. Castro, E. M. Rojas, S. Saitoh, N. M. Tuan, P. D. Tuan

then Pκ−1(t) ≡ 0. So, the solutions of (3.1) are given as follows:

φ(t) =
f(t)− b(t)Pℓ[X

+(t)Ψ+
1 (t) +X−(t)Ψ−

1 (t)]

a(t)

+
b(t)Pℓ

[
a∗(t)

a∗(t)+b∗ℓℓ(t)
MX−(t)Ψ−

1 (t)
]

a(t)

−
m∑

ν=1

λν
aν(t)− b(t)Pℓ [X

+(t)A+
ν (t) +X−(t)A−

ν (t)]

a(t)

−
m∑

ν=1

λν

b(t)Pℓ

[
a∗(t)

a∗(t)+b∗ℓℓ(t)
MX−(t)A−

ν (t)
]

a(t)
. (5.17)

Therefore, the solution φ determined by (5.17) is a solution of the equation (1.3) if

(λ1, λ2, . . . , λm) satisfy the following matrix condition(
I + E

U

)
(m+η)×m

× Λ =

(
D

B

)
(m+η)×1

. (5.18)

On the other hand, substituting (3.4) into (4.10), we get

d′j +
n∑

ν=1

λνe
′
jν = 0, (j ∈ {1, 2, . . . ,−κ}), (5.19)

where

d′j =

∫
Γ

1
n

∑n
ρ=1 ε

n−1−ρ
ℓ f(ερ+1τ)

∏n
µ=1
µ̸=ρ

a(εµ+1τ)

X+(τ)(a∗(τ) + b∗ℓℓ(τ))
τ j−1dτ,

e′jν =

∫
Γ

1
n

∑n
ρ=1 ε

n−1−ρ
ℓ aν(ερ+1τ)

∏n
µ=1
µ̸=ρ

a(εµ+1τ)

X+(τ)(a∗(τ) + b∗ℓℓ(τ))
τ j−1dτ.

Put

D′ =


d′1
d′2
...

d′−κ


−κ×1

, E′ =


e′11 e′12 . . . e′1m
e′21 e′22 . . . e′2m
...

...
. . .

...

e′−κ1 e′−κ2 . . . e′−κm


−κ×m

. (5.20)

We write (5.19) in the form of a matrix condition

E′Λ = D′. (5.21)

Combining (5.18) and (5.21), we can say that the function φ determined by (5.17)

is a solution of (1.3) if and only if (λ1, λ2, . . . , λm) satisfy the following matrix

condition I + E

U

E′


(m+η−κ)×m

× Λ =

D

B

D′


(m+η−κ)×1

. (5.22)
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Remark 5.1. Among the matrices D,E,G,B,U, V,D′, E′, the three matrices

D,B,D′ depend on f(t); the remaining ones are completely determined by

a(t), b(t), a1(t), . . . , am(t), b1(t), . . . , bm(t).

Theorem 5.1. Suppose that a∗2(t)− b∗2ℓℓ (t) ̸= 0 for any t ∈ Γ and the assumptions

of Theorem 4.1 are satisfied.

(1) Case κ > 0. Put

r = rank

(
I + E G

U V

)
(m+η)×(m+κ)

,

where E, G, U, V are determined by (5.10), (5.13) and (5.14). Then, the equation

(1.3) is solvable if and only if the function f(t) is such that

rank

(
I + E G D

U V B

)
(m+η)×(m+κ+1)

= r.

If this is the case, the solutions of the equation (1.3) are given by the formula (5.4),

where (λ1, . . . , λm), (p1, . . . , pκ) satisfy (5.16). Moreover, we can choose m+ κ− r

coefficients in (λ1, . . . , λm, p1, . . . , pκ) which are arbitrary so that φ(t) is uniquely

determined by these coefficients.

(2) Case κ ≤ 0. Put

r = rank

I + E

U

E′


(m+η−κ)×m

,

where E′ is determined by (5.20). Then, the equation (1.3) is solvable if and only if

the function f(t) determines D,B and D′ by the formulas (5.9), (5.13) and (5.20)

which satisfy the following matrix condition

rank

I + E D

U B

E′ D′


(m+η−κ)×(m+1)

= r. (5.23)

If this is the case, the solutions of the equation (1.3) are given by the formula (5.17),

where (λ1, . . . , λm) satisfy (5.22). In particular, if r = m and the condition (5.23)

is satisfied then the equation (1.3) has a unique solution.

Proof. We will start by case (1). From the assumption it follows that the equation

(1.3) has solutions if and only if there are (λ1, . . . , λm) and (p1, . . . , pκ) satisfying

the condition (5.16). We can rewrite (5.16) in the form(
I + E G

U V

)
(m+η)×(m+κ)

×
(
Λ

P

)
(m+κ)×1

=

(
D

B

)
(m+η)×1

. (5.24)
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This shows that the equation (1.3) has solutions if and only if the system (5.24)

has solutions in the space C m+κ, that is(
I + E G D

U V B

)
(m+η)×(m+κ+1)

=

(
I + E G

U V

)
(m+η)×(m+κ)

= r.

If this is the case, the system (5.24) has solutions depending onm+κ−r coefficients.

Hence, we can choose m+ κ− r coefficients in (λ1, . . . , λm, p1, . . . , pκ) so that the

remaining coefficients are uniquely determined by these coefficients.

The case (2) is proved analogously to the previous case and so the details are

here omitted.

6. Example

In this section, we consider the following particular equation in order to illustrate

our method:

(t− i)φ(t) +
−t+ 3i

2πi

∫
Γ

[
1

τ − t
− 1

τ + t
+ 2tτ2

]
φ(τ)dτ

+
1

πi

∫
Γ

[t+ 2 + t(τ − 3) + τ + 1]φ(τ)dτ = 2t+ 3. (6.1)

Note that the equation (6.1) is of the form of equation (1.3), where

n = 2,m = 3, ℓ = 1, a(t) = t− i, b(t) = −t+ 3i, f(t) = 2t+ 3, a1(t) = t+ 2,

a2(t) = t, a3(t) = 1, b1(t) = 1, b2(t) = t− 3, b3(t) = t+ 1,m(τ, t) = τ2t.

Moreover, a straightforward computation allow us to identify that

κ = IndG(t) = Ind(− t2+2
2 ) = 0,

rank

(
I + E

U

)
= rank


1 0 0

0 1 0

0 0 1

0 0 0

 = 3,

rank

(
I + E D

U B

)
= rank


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

 = 3.

Having in mind Theorem 5.1, it follows that the equation (1.3) has a unique solution

φ(t) determined by (5.17), where λ1, λ2, λ3 satisfy (5.22), that is λ1 = λ2 = λ3 = 0.

From the formula (5.17), we conclude that the equation (6.1) has a unique solution

φ given by

φ(t) = −2i+ 3

2
t+ 3i, t ∈ Γ.
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