56 research outputs found
Precise linear measurements using a calibrated reference workpiece without temperature measurements
We suggest a procedure for the correction of the errors caused by thermal
expansion of a workpiece and the scale of a linear measuring instrument (coordinate
measuring machines, length measuring machines, etc.) when linear measurements
are performed at nonstandard temperature. We use a calibrated reference
workpiece but do not require temperature measurements. An estimation of the
measurement uncertainty and application examples are given.</p
Magnetocaloric effect and magnetic cooling near a field-induced quantum-critical point
The presence of a quantum critical point (QCP) can significantly affect the
thermodynamic properties of a material at finite temperatures T. This is
reflected, e.g., in the entropy landscape S(T, r) in the vicinity of a QCP,
yielding particularly strong variations for varying the tuning parameter r such
as pressure or magnetic field B. Here we report on the determination of the
critical enhancement of near a B-induced QCP via
absolute measurements of the magnetocaloric effect (MCE), , and demonstrate that the accumulation of entropy around the QCP can be
used for efficient low-temperature magnetic cooling. Our proof of principle is
based on measurements and theoretical calculations of the MCE and the cooling
performance for a Cu-containing coordination polymer, which is a very
good realization of a spin-1/2 antiferromagnetic Heisenberg chain - one of the
simplest quantum-critical systems.Comment: 21 pages, 4 figure
Phase Separation Models for Cuprate Stripe Arrays
An electronic phase separation model provides a natural explanation for a
large variety of experimental results in the cuprates, including evidence for
both stripes and larger domains, and a termination of the phase separation in
the slightly overdoped regime, when the average hole density equals that on the
charged stripes. Several models are presented for charged stripes, showing how
density waves, superconductivity, and strong correlations compete with quantum
size effects (QSEs) in narrow stripes. The energy bands associated with the
charged stripes develop in the middle of the Mott gap, and the splitting of
these bands can be understood by considering the QSE on a single ladder.Comment: significant revisions: includes island phase, 16 eps figures, revte
Terahertz ratchet effects in graphene with a lateral superlattice
Experimental and theoretical studies on ratchet effects in graphene with a lateral superlattice excited by alternating electric fields of terahertz frequency range are presented. A lateral superlattice deposited on top of monolayer graphene is formed either by periodically repeated metal stripes having different widths and spacings or by interdigitated comblike dual-grating-gate (DGG) structures. We show that the ratchet photocurrent excited by terahertz radiation and sensitive to the radiation polarization state can be efficiently controlled by the back gate driving the system through the Dirac point as well as by the lateral asymmetry varied by applying unequal voltages to the DGG subgratings. The ratchet photocurrent includes the Seebeck thermoratchet effect as well as the effects of "linear" and "circular" ratchets, sensitive to the corresponding polarization of the driving electromagnetic force. The experimental data are analyzed for the electronic and plasmonic ratchets taking into account the calculated potential profile and the near field acting on carriers in graphene. We show that the photocurrent generation is based on a combined action of a spatially periodic in-plane potential and the spatially modulated light due to the near-field effects of the light diffraction
Lifshitz quantum phase transitions and Fermi surface transformation with hole doping in high- superconductors
We study the doping evolution of the electronic structure in the normal phase
of high- cuprates. Electronic structure and Fermi surface of cuprates with
single CuO layer in the unit cell like LaSrCuO have been
calculated by the LDA+GTB method in the regime of strong electron correlations
(SEC) and compared to ARPES and quantum oscillations data. We have found two
critical concentrations, and , where the Fermi surface
topology changes. Following I.M. Lifshitz ideas of the quantum phase
transitions (QPT) of the 2.5-order we discuss the concentration dependence of
the low temperature thermodynamics. The behavior of the electronic specific
heat is similar to the Loram and Cooper
experimental data in the vicinity of .Comment: 8 pages, 4 figure
- …