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Abstract. We suggest a procedure for the correction of the errors caused by thermal expansion of a workpiece
and the scale of a linear measuring instrument (coordinate measuring machines, length measuring machines, etc.)
when linear measurements are performed at nonstandard temperature. We use a calibrated reference workpiece
but do not require temperature measurements. An estimation of the measurement uncertainty and application
examples are given.

1 Introduction

Quality control loops in today’s production in most cases
rely on the measurement of geometrical quantities. One prob-
lem that might arise is that geometrical properties are speci-
fied at 20 ◦C, the so-called normal temperature (ISO 1:2016-
12, 2016). In practice, the temperature in a workshop or a
production line will not be adjusted to normal temperature
but undergo considerable fluctuations due to various factors
which need to be studied and taken into account (Baldo and
Donatelli, 2012). Measurement values of geometrical param-
eters taken at non-normal temperature will be erroneous due
to thermal expansion of the material (ISO/TR 16015:2003,
2003).

As a solution, production sites have to be equipped with
measuring chambers with specified and controlled equip-
ment. Besides the high maintenance costs of these measure-
ment areas it takes time to bring the manufactured work-
pieces (WPs) there and to get the required temperature bal-
ance between the measuring instrument and the parts to be
measured (ISO 15530-3:2011, 2011). Control loops will thus
become slow and changing influence factors might therefore
cause a certain number of workpieces to be produced out of
tolerance before the process can be stabilized again.

Nowadays, the temperature compensation problem is usu-
ally solved by a detailed study of the metrological properties
of the applied measuring instrument in particular, the whole
measuring process in general and hence by a correction of

errors due to these properties. This is performed either indi-
rectly – using an “ideal workpiece” that does not change its
geometrical properties due to temperature changes to make
a comparison of “what we expect” (nominal values) with
“what we have” (measured values) (Baldo and Donatelli,
2012; Ohnishi et al., 2010) or directly – when a straight anal-
ysis of “what we have” is made (to discover possible factors
that might have affected the measured results and therefore to
exclude or minimize them) (Chenyang et al., 2011; Kruth et
al., 2001). Despite these two approaches being different ac-
cording to the principles lying behind them, they have some-
thing in common. They all require highly qualified personnel
to carry out all the tests and measuring temperature of all
involved objects (even in the case of using some ideal work-
piece, the temperature of the measuring instrument has to be
determined).

Some precise complex measuring instruments like coordi-
nate measuring machines (CMMs) are equipped with ther-
mal sensors for detecting temperature from both its linear
scales and the object to be measured. That will allow these
measuring instruments to estimate the length of the object
reduced to a temperature of 20 ◦C. Manufacturers are ex-
pected to have enough funds for all required (the described
above) equipment to provide all necessary studies. However,
in spite of the potential availability of advanced technologies
able to provide automatic temperature compensation, they
are not always affordable. This might lead to a bigger un-
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certainty contribution during production processes and post-
production control. As an example, in Ukraine (where the
author Dmytro Sumin was born and raised) this is often the
case when companies try to provide some small production
activity using obsolete (sometimes dozens of years old) but
cheap equipment.

In this research work a method is described which would
allow companies like these to have an affordable alternative
to the expensive equipment, which at the same time is com-
parably effective. The authors accept the challenge to per-
form length measurements under non-normal temperature by
using calibrated reference workpieces (RWPs, therefore us-
ing the indirect approach) but without a seemingly inevitable
necessity to measure temperature, neither of the objects to
be measured nor of the measuring instrument. In Sect. 2 the
procedure for correction of thermal expansion of a workpiece
without knowledge of the temperature by referring to a cal-
ibrated reference workpiece is introduced. In Sect. 3 the un-
certainty of the measurements is estimated and in Sect. 4 ap-
plication examples are given.

2 Correction of temperature effects during length
measurements using a reference workpiece

Thermal expansion is characterized with the coefficient of
thermal expansion (CTE) (ISO/TR 16015:2003, 2003):

α =
1
lst
·
1l

1t
, (1)

where 1l is the absolute length expansion of a body at the
temperature range1t and lst is the length at standard temper-
ature.

Using Eq. (1), 1l can be calculated as

1l = lst ·α ·1t. (2)

Taking into account Eq. (2) the length lT (see Fig. 1) of a
body at its temperature can be estimated:

T = 20 ◦C+1t
lT = l20+1l = l20 (1+α ·1t) , (3)

where l20 is the length of the body at 20 ◦C.
Equation (2) is a mathematical model of thermal expan-

sion of an object. It is a linear function. So the value of 1l is
proportional to the active parameter 1t .

The nominal length of the produced workpiece is defined
at the standard temperature 20 ◦C. If the measurement is ex-
ecuted at a different temperature 1twp, the workpiece has
the actual length lact

wp that is related to the length value at
20 ◦C, l20 wp, described by the following equation:

l20 wp=
lact
wp

1+αwp1twp
, (4)

Figure 1. Expansion of an object due to temperature change.

Figure 2. Behavior of the object at different temperatures.

where αwp is the CTE of the workpiece and the value(
1+αwp1twp

)−1 is the characterization of the absolute ex-
pansion of the workpiece.

The main problem of this formula is that 1twp and lact
wp

must be known first. To estimate them a thermometer and a
calliper, for example, can be used. But the calliper is also a
material object, with a scale that has some CTE αsc and at
the temperature difference value 1tsc its length is lact

sc . Also,
equality of corresponding parameters should not be expected,
so it is assumed that 1twp 6=1tsc and αwp 6= αsc.

l20 sc =
lact
sc

1+αsc1tsc
, (5)

where the value (1+αsc1tsc)−1 characterizes the absolute
expansion of the scale.

The actual value of the workpiece’s length lact
wp is unknown

and instead of it its measured (estimated) value lwp will be
operated with. Obviously, this value (as well as lact

wp) relates to
the absolute expansion of the workpiece. However, because
it is measured (estimated) using the scale, it is also related to
the absolute expansion of the scale. For better understanding
of how this relation works and how it affects the results of
measurements, two special cases will be considered.

a. Changing temperature of the workpiece with constant
temperature of the scale:

J. Sens. Sens. Syst., 7, 609–620, 2018 www.j-sens-sens-syst.net/7/609/2018/



D. Sumin and R. Tutsch: Precise linear measurements without control of the temperature 611

Figure 3. Behavior of the scale at different temperatures.

In Fig. 2 it can be seen that the workpiece initially had
the temperature T1

◦C, thus its actual length was lact
wp1

,
then its temperature became T2

◦C (and the length lact
wp2

),
whereas the scale had the same temperature T ◦C (the
length lact

sc = const) in both cases.

Estimated values lwp1 and lwp2 (the readings from the
scale) showed themselves to be directly proportional to
the parameters lact

wp1
and lact

wp2
correspondingly: an incre-

ment of lact
wp leads to an increment of lwp:

lwp1

lact
wp1

=
lwp2

lact
wp2

. (6)

b. Changing temperature of the scale with constant tem-
perature of the workpiece:

In Fig. 3 it is seen that the workpiece had the constant
temperature T ◦C (and the length lact

wp = const), whereas
the scale initially had the temperature T1

◦C (the length
lact
sc1

), then its temperature became T2
◦C (the length lact

sc2
).

Estimated values lwp1 and lwp2 showed themselves to be
inversely proportional to the parameters lact

sc1
and lact

sc2
cor-

respondingly: an increment of lact
sc leads to a decrement

of lwp:

lwp1 · l
act
sc1
= lwp2 · l

act
sc2
. (7)

In real life changing of both parameters lact
sc and lact

wp at the
same time (see Fig. 4) is mostly the case.

The workpiece had the temperature T1
◦C (the length lact

wp1
)

and the scale had the temperature T2
◦C (the length lact

sc1
), then

they both changed their temperatures to the values T3
◦C (the

length lact
wp2

) and T4
◦C (the length lact

sc2
) correspondingly. The

way that the parameter lwp relates to the parameters lact
wp and

lact
sc is already known from Eqs. (6) and (7), so taking these

into account, a new proportion can be derived:

lwp1 ·
lact
sc1

lact
wp1

= lwp2 ·
lact
sc2

lact
wp2

. (8)

 

 

 

Figure 4. Behavior of both objects at different temperatures.

If we assume all parameters with subscript “1” (the left
side of Eq. 8) to have been achieved at 1twp = 0K and
1tsc = 0K, according to Eqs. (4) and (5), it can be stated
that

l20 wp ·
l20 sc

l20 wp
= lwp ·

lact
sc
lact
wp
. (9)

For further calculations it will be assumed that l20 sc = l20 wp
(the scale is expected not to be deformed by temperature ef-
fects at 1tsc = 0K). After transformation of Eq. (9), l20 wp
can be found as follows:

l20 wp = lwp ·
lact
sc
lact
wp
= lwp ·

1+αsc1tsc

1+αwp1twp

or

l20 wp = lwp ·
1+αsc1t

wp
sc

1+αwp1twp
, (10)

where 1twp
sc is the temperature of the scale during measure-

ments of lwp.
It is clearly seen that in the case of equality of absolute

expansion characterization values of the workpiece and the
scale (1+αsc1t

wp
sc = 1+αwp1twp) even if1twp 6=1t

wp
sc and

αwp 6= αsc, the temperature effect is cancelled and the de-
sired value l20 wp therefore can be achieved without any ad-
ditional action. However, such an instance is a rare case. To
use Eq. (10) we should figure out each of these four unknown
parameters: αwp, αsc, 1twp and 1twp

sc . Even if a thermome-
ter was used so that 1twp and 1twp

sc could be found, the
CTEs nevertheless may not be calculated directly, but only
achieved after a series of measurements (Amatuni, 1972).

Analyzing Eq. (10), it can be discovered that lwp and
l20 wp are related to each other through a term which contains
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all four unknown parameters. This means that if a checked
workpiece were used as the reference standard (ISO/TR
16015:2003, 2003; ISO 15530-3:2011, 2011) (a so-called
reference workpiece), Eq. (10) would be as follows:

l20 rwp = lrwp ·
1+αsc1t

rwp
sc

1+αrwp1trwp
, (11)

where lrwp and l20 rwp are the length of the reference
workpiece at 1trwp 6= 0K and 1trwp = 0K correspondingly,
1t

rwp
sc is the temperature difference at the scale during mea-

surements of lrwp, αrwp is the CTE of the reference workpiece
and αsc remains unchanged as we are using the same measur-
ing instrument.

Now it is necessary to check these workpieces using
the same measuring instrument as a comparator (ISO/TR
16015:2003, 2003). If the reference workpiece’s CTE and
its temperature were αrwp = αwp and 1trwp =1twp corre-
spondingly and the temperature of the scale during the refer-
ence workpiece measurements were 1t rwp

sc = 1t
wp
sc (assum-

ing that all objects’ temperature distribution is uniform), it
would be able to decrease the number of four unknown pa-
rameters to only one, combining Eqs. (10) and (11) to a pro-
portion

l20 wp

lwp
=
l20 rwp

lrwp
. (12)

Only l20 rwp is now needed. As long as the value l20 rwp is
measured at 20 ◦C in a laboratory and provided to us, Eq. (12)
will not have any unknown parameters (out of the four stated
above) anymore.

The desired value l20 wp in this case could be found as

l20 wp =
l20 rwp · lwp

lrwp
. (13)

Using the reference workpiece according to Eq. (13), we
can find out l20 wp for any other workpiece of the same
type (with the same desired geometrical parameter) without
knowing αwp, αsc, twp and twp

sc . The components lwp and lrwp
in Eq. (13) are estimated (not actual!) values achieved us-
ing the scale of a measuring instrument. Because usually the
scale’s CTE has a nonzero value and expands too, the differ-
ences l rwp− l20 rwp and lwp− l20 wp show the so-called rela-
tive expansion of the workpiece compared to the scale which
will be smaller than the expected absolute expansion of the
workpiece (e.g., lact

wp− l20 wp in Eq. 4).

3 Estimation of uncertainty

It is assumed that three of the four corresponding parame-
ters are equal: αrwp = αwp,1trwp =1twp and1t rwp

sc = 1t
wp
sc

(αsc = const). But, it is clear, that in real life they never are;
even CTEs of two different objects made from one material
may be slightly different. Also, despite the fact that it is re-
quired that the reference workpiece and the workpiece to be

measured are similar (within certain tolerances) (ISO 15530-
3:2011, 2011), there might be some difference between ge-
ometrical and physical properties of the workpiece and the
reference workpiece.

Using Eqs. (10), (11) and (13) without making simplifying
assumptions, it can be stated that

l20 wp =
l20 rwplwp

(
1+αsc1t

wp
sc
)(

1+αrwp1trwp
)

lrwp
(
1+αwp1twp

)(
1+αsc1t

rwp
sc
) , (14)

where 1twp
sc and 1t rwp

sc are the temperature differences at the
scale during measurements of lwp and lrwp.

Uncertainty of the measurements can be estimated using
Eq. (14) as a mathematical model of measurements (JCGM
100:2008, 2008). After a series of transformations it will look
like

l20 wp = (15)

l20 rwplwp
(
1+αrwp1trwp+αsc1t

wp
sc +αrwpαsc1trwp1t

wp
sc
)

lrwp
(
1+αwp1twp+αsc1t

rwp
sc +αwpαsc1twp1t

rwp
sc
) .

In Eq. (15) αrwpαsc1trwp1t
wp
sc → 0 and

αwpαsc1twp1t
rwp
sc → 0 at any natural conditions, so

the formula can be shown as

l20 wp =
l20 rwplwp

lrwp
·

(
1+αrwp1trwp+αsc1t

wp
sc
)(

1+αwp1twp+αsc1t
rwp
sc
) + . . .. (16)

Defining 1t
wp
sc =1trwp+ δt

wp
sc , 1t

rwp
sc =1trwp+ δt

rwp
sc ,

1twp =1trwp+ δtwp and αwp = αrwp+ δαwp, Eq. (16) can
be shown as

l20 wp = (17)
f
(
l20 rwp, lwp, lrwp,1trwp,αrwp,αsc,δt

wp
sc ,δt

rwp
sc ,δtwp,δαwp

)
=
l20 rwplwp

lrwp

·

(
1+αrwp1trwp+αsc

(
1trwp+ δt

wp
sc
))(

1+
(
αrwp+ δαwp

)(
1trwp+ δtwp

)
+αsc

(
1trwp+ δt

rwp
sc
)) .

The differences δtwp
sc , δt rwp

sc , δtwp and δαwp (but not their
uncertainties) are estimated to be zero. The values l20 rwp,
lwp, lrwp,1trwp, αrwp and αsc are assumed to be uncorrelated.
Taking this into account, the combined standard uncertainty
can be expressed as

u2
c
(
l20 wp

)
= c2 (l20 rwp

)
u2 (l20 rwp

)
+ c2 (lwp

)
u2 (lwp

)
+ c2 (lrwp

)
u2 (lrwp

)
+ c2 (1trwp

)
u2 (1trwp

)
+ c2 (αrwp

)
u2 (αrwp

)
+ c2 (αsc)u2 (αsc)+ c2 (δtwp

sc
)
u2 (δtwp

sc
)

+ c2 (δt rwp
sc
)
u2 (δt rwp

sc
)
+ c2 (δtwp

)
u2 (δtwp

)
+ c2 (δαwp

)
u2 (δαwp

)
, (18)

where the sensitivity factors c (xi)=
∂(f (x1,x2,...,xn))

∂(xi )
, i =

1,2, . . .,n are
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c
(
l20 rwp

)
= (19)

lwp
(
1+αrwp1trwp+αsc

(
1trwp+ δt

wp
sc
))

lrwp
(
1+

(
αrwp+ δαwp

)(
1trwp+ δtwp

)
+αsc

(
1trwp+ δt

rwp
sc
)) ,

c
(
lwp
)
= (20)

l20 rwp
(
1+αrwp1trwp+αsc

(
1trwp+ δt

wp
sc
))

lrwp
(
1+

(
αrwp+ δαwp

)(
1trwp+ δtwp

)
+αsc

(
1trwp+ δt

rwp
sc
)) ,

c
(
lrwp

)
= (21)

−
l20 rwplwp

(
1+αrwp1trwp+αsc

(
1trwp+ δt

wp
sc
))

l2rwp
(
1+

(
αrwp+ δαwp

)(
1trwp+ δtwp

)
+αsc

(
1trwp+ δt

rwp
sc
)) ,

c
(
1trwp

)
=
l20 rwplwp

lrwp
(22)

·

(
αrwp+αsc

1+
(
αrwp+ δαwp

)(
1trwp+ δtwp

)
+αsc

(
1trwp+ δt

rwp
sc
)

−

(
1+αrwp1trwp+αsc

(
1trwp+ δt

wp
sc
))(
αrwp+ δαwp+αsc

)(
1+

(
αrwp+ δαwp

)(
1trwp+ δtwp

)
+αsc

(
1trwp+ δt

rwp
sc
))2
)
,

c
(
αrwp

)
=
l20 rwplwp

lrwp
(23)

·

(
1trwp

1+
(
αrwp+ δαwp

)(
1trwp+ δtwp

)
+αsc

(
1trwp+ δt

rwp
sc
)

−

(
1+αrwp1trwp+αsc

(
1trwp+ δt

wp
sc
))(
1trwp+ δtwp

)(
1+

(
αrwp+ δαwp

)(
1trwp+ δtwp

)
+αsc

(
1trwp+ δt

rwp
sc
))2
)
,

c (αsc)=
l20 rwplwp

lrwp
(24)

·

(
1trwp+ δt

wp
sc

1+
(
αrwp+ δαwp

)(
1trwp+ δtwp

)
+αsc

(
1trwp+ δt

rwp
sc
)

−

(
1+αrwp1trwp+αsc

(
1trwp+ δt

wp
sc
))(
1trwp+ δt

rwp
sc
)(

1+
(
αrwp+ δαwp

)(
1trwp+ δtwp

)
+αsc

(
1trwp+ δt

rwp
sc
))2
)
,

c
(
δt

wp
sc
)
= (25)

l20 rwplwpαsc

lrwp
(
1+

(
αrwp+ δαwp

)(
1trwp+ δtwp

)
+αsc

(
1trwp+ δt

rwp
sc
)) ,

c
(
δt

rwp
sc
)
= (26)

−
l20 rwplwpαsc

(
1+αrwp1trwp+αsc

(
1trwp+ δt

wp
sc
))

lrwp
(
1+

(
αrwp+ δαwp

)(
1trwp+ δtwp

)
+αsc

(
1trwp+ δt

rwp
sc
))2 ,

c
(
δtwp

)
= (27)

−
l20 rwplwp

(
1+αrwp1trwp+αsc

(
1trwp+ δt

wp
sc
))(
αrwp+ δαwp

)
lrwp

(
1+

(
αrwp+ δαwp

)(
1trwp+ δtwp

)
+αsc

(
1trwp+ δt

rwp
sc
))2

and

c
(
δαwp

)
= (28)

−
l20 rwplwp

(
1+αrwp1trwp+αsc

(
1trwp+ δt

wp
sc
))(
1trwp+ δtwp

)
lrwp

(
1+

(
αrwp+ δαwp

)(
1trwp+ δtwp

)
+αsc

(
1trwp+ δt

rwp
sc
))2 .

Uncertainty of the calibration of the reference workpiece
u
(
l20 rwp

)
should be taken from the calibration certificate,

which states the value and uncertainty of l20 rwp for the refer-
ence workpiece.

The uncertainties of the measured lengths u
(
lwp
)
, u
(
lrwp

)
and temperature difference u

(
1trwp

)
could be calculated as a

standard uncertainty of type A and/or type B after the values
lwp, lrwp and 1trwp were measured by corresponding mea-
surement instruments.

Uncertainty of the reference workpiece’s thermal expan-
sion coefficient u(αrwp) should be taken from the calibration
certificate, which states the value and uncertainty of αrwp
for the reference workpiece. The uncertainty for the values
l20 rwp and αrwp (as well as the values themselves) is provided
in the same certificate (a CTE investigation should be specif-
ically carried out for the given object prior to the method
application).

Regardless of what the value of c (αsc) in Eq. (24) is, it
was decided to use the same measuring instrument for defin-
ing lengths of the reference workpiece and the workpiece,
so αsc itself can not (or, at least, should not) affect values
lrwp and lwp, and so it will be assumed that c (αsc)= 0 (it is
estimated that the CTE of the scale αsc remains the same dur-
ing our measurement session). Thus, the standard uncertainty
u (δαsc) (whatever its value is) can be neglected.

The uncertainties of the differences of temperature
u
(
δt

wp
sc
)
, u

(
δt

rwp
sc
)
, u(δtwp) and the difference of CTEs

u(δαwp) should be considered specifically for the circum-
stances according to which the values δtwp

sc , δt rwp
sc , δtwp and

δαwp were assumed.
Expanded uncertainty Up with a level of confidence p and

coverage factor kp can be calculated using Eq. (18) as fol-
lows:

Up = kp · uc
(
l20 wp

)
. (29)

The final estimation lact
20 wp of the value of l20 wp therefore

can be expressed as

l20 wp = l20 wp±Up. (30)

The uncertainty of measuring humidity and atmospheric
pressure was neglected, as α = f (t) (Amatuni, 1972).

All given formulae are well known and used here as an
adaptation for a specific task solution.
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Figure 5. The workpiece (upper) and the reference workpiece
(lower) on the CMM’s table in example 1.

4 Practical application

4.1 Example 1

There are two gauge blocks calibrated beforehand which will
be used as the WP to be measured using a CMM and the
RWP (shown in Fig. 5). The task is to determine the length
of a WP (as if it were unknown) at the normal temperature
l20 wp, evaluate the uncertainty of measurements and compare
calculated results with actual ones.

The RWP’s properties are known; its length
at normal temperature and the CTE are l20 rwp =

125.0000 mm±0.0002 mm and αrwp = 10.52×10−6 K−1
±

1× 10−6 K−1, respectively.
Measurements which have been carried out assuming that

αrwp = αwp give the following values of length of RWP and
WP at a current temperature lrwp = 125.0043 mm and lwp =

125.0048 mm.
Using Eq. (13) the desired value can be calculated:

l20 wp =
125.0000 mm · 125.0048mm

125.0043mm
= 125.0005mm.

In this way, the first step of the task is done – l20 wp is known.
Now, all possible uncertainty factors must be considered.

Evaluation of the uncertainty will be done in three steps:

1. calculation of sensitivity factors c (xi),

2. consideration of standard uncertainty values u (xi),

3. calculation of combined standard uncertainty uc (f (x))
and expanded uncertainty Up.

Before starting this procedure, we will summarize all known
arguments and assume all unknown arguments of the func-
tion

l20 wp =

f
(
l20 rwp, lwp, lrwp,1trwp,αrwp,αsc,δt

wp
sc ,δt

rwp
sc ,δtwp,δαwp

)
,

where l20 wp = 125.0005 mm, l20 rwp = 125.0000 mm, lwp =

125.0048 mm, lrwp = 125.0043 mm, 1trwp = 15 K, αrwp =

10.52×10−6 K−1, αsc = 8×10−6 K−1δt
wp
sc = δt

rwp
sc = δtwp =

0K and δαwp = 0× 10−6 K−1.
If the parameter αsc is unknown it can be estimated as any

reasonable value; in this very instance it is provided though.
The calibration certificate gives the expanded uncertainty

of the l20 rwpU95 = 0.0002 mm with coverage factor k = 2.
The standard uncertainty is then

u
(
l20 rwp

)
=
U95

k
= 0.0001mm= 0.1µm.

The value lwp is achieved as a mean value of five measure-
ments. The standard uncertainty of the measured value can
be calculated as a type A standard uncertainty:

u
(
lwp
)
=

√√√√√ n∑
i

(
lwpi − lwp

)2
n− 1

= 0.9µm.

According to the calibration certificate of the measuring in-
strument, the expanded uncertainty of measurements with it
is given as a distribution range± (1.5+L/500) µm, where L
(in mm) is the nominal size of the object to be measured,
and because the actual value lact

wp can be anywhere within
this range at equal probability, a rectangular law of a ran-
dom value distribution is to be considered. The standard un-
certainty due to a random error of the measuring instrument
(mi) is then

u
(
lmi
wp

)
=

(
1.5+ 125

500

)
µm

√
3

= 1.0µm.

The standard uncertainty for the lwp will be

u
(
lwp
)
=

√
u2
(
lwp
)
+ u2

(
lmi
wp

)
=

√
(0.9 µm)2

+ (1.0µm)2
= 1.4µm.

The standard uncertainty for the value lrwp can be calculated
similarly as for the lwp:

u
(
lrwp

)
=

√√√√√ n∑
i

(
lrwpi − lrwp

)2
n− 1

= 0.6µm,

u
(
lmi
rwp

)
=

(
1.5+ 125

500

)
µm

√
3

= 1.0µm,

u
(
lrwp

)
=

√
u2
(
lrwp

)
+ u2

(
lmi
rwp

)
=

√
(0.6µm)2

+ (1.0µm)2
= 1.2µm.
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The reported environmental temperature was ∼ 35 ◦C. The
temperature at the time of measurements was not recorded.
By this, it is assumed that 1trwp = 15 K (trwp = 35 ◦C), and
because the RWP, WP and the measuring instrument were
in the same chamber, all temperature differences δtwp

sc , δt rwp
sc

and δtwp are estimated to be zero. The measurements took
around 20 min during which the environmental temperature
might have changed by ±2 K. So, taking into account the
conditions described above and the expanded uncertainty of
the thermometer, which was used for environmental temper-
ature measurements U95 = 1.0 K (k = 2), it is possible to es-
timate the standard uncertainty as follows:

u
(
1trwp

)
=

2K
√

3
= 1.2K,

u
(
1tmi

rwp

)
=
U95

k
= 0.5K,

u
(
1trwp

)
=

√
u2
(
1trwp

)
+ u2

(
1tmi

rwp

)
=

√
(1.2 K)2

+ (0.5K)2
= 1.3K.

The calibration certificate gives the value of the αrwp with the
distribution range ±1× 10−6 K−1, and because actual value
αact

rwp can be anywhere within this range at equal probability,
a rectangular law of a random value distribution is to be con-
sidered. The standard uncertainty is then

u
(
αrwp

)
=

1× 10−6 K−1
√

3
= 0.6× 10−6 K−1.

As was said before, the temperatures of the RWP, WP and the
measuring instrument are expected to be equal, but the dif-
ferences δtwp

sc , δt rwp
sc and δtwp should be within the estimated

range ±1.0K. The standard uncertainty is

u
(
δt

wp
sc
)
= u

(
δt

rwp
sc
)
= u

(
δtwp

)
=

1.0K
√

3
= 0.6K.

Similarly to the speculations regarding αrwp, the difference
δαwp is estimated to be within the range±1×10−6 K−1. The
standard uncertainty is then

u
(
δαwp

)
=

1× 10−6 K−1
√

3
= 0.6× 10−6 K−1.

Now it is possible to express the combined standard uncer-
tainty u2

c
(
l20 wp

)
according to Eq. (18):

u2
c
(
l20wp

)
= 1.02

· (0.1µm)2
+ 1.02

· (1.4µm)2
+ (−1.0)2

· (1.2µm)2
+

(
0mmK−1

)2
· (1.3K)2

+(0mmK)2
·

(
0.6× 10−6 K−1

)2
+

(
1.0µmK−1

)2

· (0.6K)2
+

(
−1.0µmK−1

)2
· (0.6K)2

+

(
−1.3mmK−1

)2
· (0.6K)2

+ (−1874416.2µmK)2

·

(
0.6× 10−6 K−1

)2

= (0.1µm)2
+ (1.4µm)2

+ (−1.2µm)2
+ (0µm)2

+ (0µm)2
+ (0.6µm)2

+ (−0.6µm)2
+ (−0.8µm)2

+ (−1.1µm)2
= (6.0µm)2.

The crucial contributors here are the values of lwp, lrwp and
δαwp – each of them contributed ≥ 1µm. These major con-
tributors in the example are the sources of the uncertainty that
come from the measuring instrument and the difference be-
tween CTEs of the objects to be measured. So, more accurate
and precise results can be obtained using a measuring instru-
ment with a lower uncertainty of measurements and work-
pieces made of the same material.

Therefore,

uc
(
l20 wp

)
= 2.5µm.

Using Eqs. (29) and (30), we can express the final value lact
20 wp

at the level of confidence p = 95%:

Up = 2 · 2.5µm= 5.0µm,

l20 wp = (125.0005± 0.0050)mm.

All calculated results according to Eqs. (18)–(28) are shown
in Table 1.

The properties of the WP according to the calibration
certificate are l20wp = (124.9968± 0.0002) mm and αwp =(
11.60× 10−6

± 1× 10−6) K−1 (the gauge blocks are from
different manufacturers). Now, the En criterion (Wöger,
1999) can be applied to check if the calculated value is
compatible with the value given in the certificate (JCGM
200:2012, 2012):

En =
ldet− lref√
U2

det+U
2
ref

, (31)

where ldet is the measured result and lref is the reference value
that compatibility is to be checked with. The values Udet and
Uref are their expanded uncertainties correspondingly.

Compatibility is considered to be confirmed if |En| ≤ 1.
In this example ldet and Udet are the values that were deter-

mined during the measurements and uncertainty evaluation.
The values lref and Uref are given in the certificate. Therefore
ldet = 125.0005mm, Udet = 0.0050mm, lref = 124.9968mm
and Uref = 0.0002mm. Applying Eq. (31), the criterion is

En =
125.0005mm− 124.9968mm√
(0.0050mm)2

+ (0.0002mm)2

=
0.0037mm
0.0050mm

≈ 0.8≤ 1.

Technically, the compatibility is confirmed (|En| ≤ 1); how-
ever, the achieved criterion is very close to its boundary value
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Table 1. Uncertainty budget for example 1.

Error Type Standard Sensitivity Uncertainty
source uncertainty coefficient contribution
xi u(xi ) c(xi ) u(xi ) ·c(xi ), µm

Calibrated length of the RWP at 20 ◦C
(l20 rwp = 125.0000 mm) B 0.1 µm 1 0.1

Measured length of the WP
(lwp = 125.0048 mm) B 1.4 µm 1 1.4
– random effects during measurements A 0.9 µm
– measuring instrument B 1.0 µm

Measured length of the RWP
(lrwp = 125.0043 mm) B 1.2 µm −1 −1.2
– random effects during measurements A 0.6 µm
– measuring instrument B 1.0 µm

Measured temperature of the RWP
(trwp =1trwp+ 20 ◦C= 35 ◦C) B 1.3 K 0 µm K−1 0.0
– random effects during measurements A 1.2 K
– measuring instrument B 0.5 K

Calibrated CTE of the RWP
(αrwp = 10.52× 10−6 K−1) B 0.6×10−6 K−1 0 µm K 0.0

Known/assumed CTE of the scale
(αrwp = 8× 10−6 K−1) – Can be

neglected
0 µm K−1 0.0

Possible temperature difference be-
tween the RWP and the scale during
measurements of length of the WP
(δtwp

sc = 0 K) B 0.6 K 1.0 µm K−1 0.6

Possible temperature difference be-
tween RWP and the scale temperature
during measurements of length of the
RWP
(δt rwp

sc = 0 K) B 0.6 K −1.0 µm K−1
−0.6

Possible temperature difference be-
tween the RWP and the WP
(δtwp = 0 K) B 0.6 K −1.3 µm K−1

−0.8

Possible CTE difference between RWP
and WP
(δαwp = 0× 10−6 K−1) B 0.6×10−6 K−1

−1 874 416.2 µm K −1.1

Calculated length of the WP at 20 ◦C l20 wp = 125.0005 mm

Combined standard uncertainty uc(l20 wp)= 2.5 µm

Coverage factor k95 = 2 expanded un-
certainty

U95 = k95 · uc(l20 wp)=
2 · 2.5 µm= 5.0 µm

(confidence level p = 95 %)
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(at which the compatibility is disproved). Is there any way to
make the measured result ldet more reliable? As was stated
above, in this example the main uncertainty contributors are
lwp, lrwp and δαwp. The first two are due to the measuring
instrument and cannot be dramatically affected (unless the
measuring instrument is changed for a better one), whereas
the last is up to the material of the workpieces to be measured
so that it can be greatly reduced.

4.2 Example 2

For this example, two actual workpieces are used. They are
made of the same material, so now it is known that their
CTEs should be completely the same (αrwp = αwp). How-
ever the workpieces have different shape and length (along
the measurement axis). Despite the fact that the workpieces
had not been officially calibrated, they were both measured
using the CMM at 20 ◦C multiple times with the uncertainty
estimation beforehand so that their geometrical parameters
were known and could be checked. The measurements will
be made using a length gauge (see Fig. 6).

The RWP has the following properties: l20 rwp =

160.0013mm± 0.0020mm and αrwp = 23.6× 10−6 K−1.
Measurements that have been carried out give the follow-

ing values of length of RWP and WP at a current temperature:
lrwp = 160.0418mm and lwp = 150.0015mm.

Using Eq. (13), the desired value can be calculated

l20wp =
160.0013mm · 150.0015mm

160.0418mm
= 149.9635mm.

Similar to the first example, we will summarize all
known arguments and assume all unknown argu-
ments: l20 wp = 149.9635mm, l20 rwp = 160.0013mm,
lwp = 150.0015mm, lrwp = 160.0418mm, 1trwp = 23.5K,
αrwp = 23.6× 10−6 K−1, αsc = 12.6× 10−6 K−1,
δt

wp
sc = δt

rwp
sc = δtwp = 0K and δαwp = 0× 10−6 K−1.

In this example the parameter αsc according to the mea-
suring instrument’s manual should be close to zero (made
of Zerodur). However, the instrument is mounted on a steel
stand which has some nonzero CTE. So the stand’s CTE (a
table value for steel) was taken as the scale’s CTE.

The uncertainty of the l20 rwpU95 = 0.0020mm with cov-
erage factor k = 2. The standard uncertainty is then

u
(
l20 rwp

)
=
U95

k
= 0.0010mm= 1.0µm.

The value lwp is achieved as a mean value of six measure-
ments. The standard uncertainty of the measured value can
be calculated as a type A standard uncertainty:

u
(
lwp
)
=

√√√√√ n∑
i

(
lwpi − lwp

)2
n− 1

= 0.2µm.

The calibration certificate for the measuring instrument is not
available; the manual states the accuracy of the device to be

 

 

 

 

 

 

 

 

 

Figure 6. The reference workpiece (left) and the workpiece (right)
and the length gauge in example 2.

±0.2µm, which we will use as the expanded uncertainty of
measurements, and because the actual value lact

wp can be any-
where within this range at equal probability, a rectangular
law of a random value distribution is to be considered. The
standard uncertainty due to a random error of the measuring
instrument is then

u
(
lmi
wp

)
=

0.2µm
√

3
= 0.1µm.

The standard uncertainty for the lwp will be

u
(
lwp
)
=

√
u2
(
lwp
)
+ u2

(
lmi
wp

)
=

√
(0.2µm)2

+ (0.1µm)2
= 0.2µm.
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The standard uncertainty for the value lrwp can be calculated
similarly as for the lwp:

u
(
lrwp

)
=

√√√√√ n∑
i

(
lrwpi − lrwp

)2
n− 1

= 0.2µm,

u
(
lmi
rwp

)
=

0.2µm
√

3
= 0.1µm.

u
(
lrwp

)
=

√
u2
(
lrwp

)
+ u2

(
lmi
rwp

)
=

√
(0.1µm)2

+ (0.2µm)2
= 0.2µm.

The measured environmental temperature was 43–44 ◦C. The
temperature at the time of measurements was not recorded. In
this way, it is assumed that 1trwp = 23.5K (trwp = 43.5 ◦C),
and because the RWP, WP and the measuring instrument
were in the same chamber, all temperature differences, δtwp

sc ,
δt

rwp
sc and δtwp, are estimated to be zero. The measurements

took around 10 min during which the environmental temper-
ature might have changed by ±1K. So, taking into account
the conditions described above and the expanded uncertainty
of the thermometer, which was used for the environmental
temperature measurements U95 = 0.1K (k = 2), it is possi-
ble to estimate the standard uncertainty as following

u
(
1trwp

)
=

1K
√

3
= 0.6K,

u
(
1tmi

rwp

)
=
U95

k
= 0.1K,

u
(
1trwp

)
=

√
u2
(
1trwp

)
+ u2

(
1tmi

rwp

)
=

√
(0.6 K)2

+ (0.1K)2
= 0.6K.

The manufacturer of the aluminium billet (the one that the
workpieces are made of) only states the value of the CTE
itself without any distribution range; that is why a typical
range of±1×10−6 K−1 is assumed. Because the actual value
αact

rwp can be anywhere within this range at equal probability,
a rectangular law of a random value distribution is to be con-
sidered. The standard uncertainty is then

u
(
αrwp

)
=

1× 10−6 K−1
√

3
= 0.6× 10−6 K−1.

The temperatures of the RWP, WP and the measuring instru-
ment are expected to be equal, but the differences δtwp

sc , δt rwp
sc

and δtwp should be within the estimated range ±0.5K. The
standard uncertainty is

u
(
δt

wp
sc
)
= u

(
δt

rwp
sc
)
= u

(
δtwp

)
=

0.5K
√

3
= 0.3K.

The difference δαwp is estimated to be 0× 10−6 K−1. The
standard uncertainty is then

u
(
δαwp

)
=

0× 10−6 K−1
√

3
= 0× 10−6 K−1.

Now it is possible to express the combined standard uncer-
tainty u2

c
(
l20 wp

)
according to Eq. (18):

u2
c
(
l20 wp

)
= 0.92

· (1.0µm)2
+ 1.02

· (0.2µm)2
+ (−0.9)2

· (0.2µm)2

+

(
0mmK−1

)2
· (0.6K)2

+ (0mmK)2
·

(
0.6× 10−6 K−1

)2

+

(
1.9µmK−1

)2
· (0.3K)2

+

(
−1.9µmK−1

)2
· (0.3K)2

+

(
−3.5µmK−1

)2

· (0.3K)2
+ (−3520237.2µmK)2

·

(
0× 10−6 K−1

)2

= (0.9µm)2
+ (0.2µm)2

+ (−0.2µm)2
+ (0µm)2

+ (0µm)2
+ (0.5µm)2

+ (−0.5µm)2
+ (−1.0µm)2

+ (0µm)2
= (2.4µm)2.

In this example crucial contributors are only the values of
l20 rwp and δtwp – each of them contributed ∼ 1µm. This
means that using a measuring instrument that is even more
precise is not profitable. Technically speaking, better accu-
racy in this case is hardly possible; one of the contributors
depends on the accuracy of the RWP’s calibration (which
is already expected to be higher), and the other on the way
that the environmental temperature is distributed. Example 2
shows that the equality of the workpiece’s CTEs is much
more important than the equality of the geometrical prop-
erties.

Therefore,

uc
(
l20 wp

)
= 1.6µm.

Using Eqs. (29) and (30), we can express the final value lact
20 wp

at the level of confidence p = 95%:

Up = 2 · 1.6µm= 3.2µm,

l20 wp = (149.9635± 0.0032)mm.

All calculated results are shown in Table 2.
The established length of the WP using precise measure-

ments is l20 wp = 149.9617mm±0.0020mm. So, for this ex-
ample, according to Eq. (31):

ldet = 149.9635mm
Udet = 0.0032mm
lref = 149.9617mm,
Uref = 0.0020mm,

En =
149.9635mm− 149.9617mm√
(0.0032mm)2

+ (0.0020mm)2
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Table 2. Uncertainty budget for example 2.

Error Type Standard Sensitivity Uncertainty
source uncertainty coefficient contribution
xi u(xi ) c(xi ) u(xi ) ·c(xi ), µm

Calibrated length of the RWP at 20 ◦C
(l20 rwp = 160.0013 mm) B 1.0 µm 0.9 0.9

Measured length of the WP
(lwp = 150.0015 mm) B 0.2 µm 1.0 0.2
– random effects during measurements A 0.2 µm
– measuring instrument B 0.1 µm

Measured length of the RWP
(lrwp = 160.0418 mm) B 0.2 µm −0.9 −0.2
– random effects during measurements A 0.2 µm
– measuring instrument B 0.1 µm

Measured temperature of the RWP
(trwp =1trwp+ 20 ◦C= 43.5 ◦C) B 0.6 K 0 µm K−1 0.0
– random effects during measurements A 0.1 K
– measuring instrument B 0.6 K

Calibrated CTE of the RWP
(αrwp = 23.6× 10−6 K−1) B 0.6×10−6 K−1 0 µm K 0.0

Known/assumed CTE of the scale
(αrwp = 12.6× 10−6 K−1) – Can be

neglected
0 µm K−1 0.0

Possible temperature difference be-
tween the RWP and the scale during
measurements of length of the WP
(δtwp

sc = 0 K) B 0.3 K 1.9 µm K−1 0.5

Possible temperature difference be-
tween RWP and the scale temperature
during measurements of length of the
RWP
(δt rwp

sc = 0 K) B 0.3 K −1.9 µm K−1
−0.5

Possible temperature difference be-
tween the RWP and the WP
(δtwp = 0 K) B 0.3 K −3.5 µm K−1

−1.0

Possible CTE difference between RWP
and WP
(δαwp = 0× 10−6 K−1) B 0× 10−6 K−1

−3520237.2 µm K 0.0

Calculated length of the WP at 20 ◦C l20 wp = 149.9635 mm

Combined standard uncertainty uc(l20 wp)= 1.6 µm

Coverage factor k95 = 2 expanded un-
certainty

U95 = k95 · uc(l20 wp)=
2 · 1.6 µm= 3.2 µm

(confidence level p = 95 %)
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=
0.0018mm
0.0038mm

≈ 0.5≤ 1.

Here, compatibility is also confirmed. But, in this example,
due to a lesser value ofEn, reliability of the determined value
ldet (the probability that ldet and lref are really compatible) is
higher.

The En criterion is unfortunately inapplicable for the real
measurements as the value lref is usually not known. How-
ever, the uncertainty contributors’ analysis (which for both
examples was performed after calculation of the combined
standard uncertainty according to Eq. 18) can give enough
information about the compatibility of the determined value
with some unknown reference value.

Note that all calculations for examples 1 and 2 were per-
formed using MS Excel. Due to a higher accuracy, some
of the results might be negligibly different than if they had
been obtained using a conventional calculator. The final er-
rors were rounded up (e.g., 2.401 to 2.5 µm).

5 Conclusions

The suggested method does not provide a level of accuracy
reachable with methods which require temperature measure-
ments; however, it is universal (can be applied to any linear
measuring instrument without any hardware modifications),
it does not slow down the measuring process for tempera-
ture stabilization (does not create a so-called bottleneck at
the production conveyor) and it can be used by a measuring
instrument’s operator without additional qualification train-
ing. The method can be applicable in production areas where
no submicron accuracy is required.

The best results are achievable with shortening of the mea-
surements’ duration (so the temperature does not change sig-
nificantly) and the RWP should at least be made of a similar
material to the WP. During the measurements, draughts and
proximity to warming sources should be avoided (to prevent
inequality in the temperature distribution for the RWP and
the WP under test).
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