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Abstract In this work we give a comprehensive overview of the time consistency
property of dynamic risk and performance measures, focusing on a the discrete time
setup. The two key operational concepts used throughout are the notion of the LM-
measure and the notion of the update rule that, we believe, are the key tools for
studying time consistency in a unified framework.
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“The dynamic consistency axiom turns out to be the heart of the matter.”
A. Jobert and L. C. G. Rogers
Valuations and dynamic convex risk measures, Math Fin 18(1), 2008, 1–22.

Introduction

The goal of this work is to give a comprehensive overview of the time consistency
property of dynamic risk and performance measures. We focus on discrete time setup,
since most of the existing literature on this topic is dedicated to this case.
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The time consistency surveyed in this paper is related to dynamic decision making
subject to various uncertainties that evolve in time. Typically, decisions are made
subject to the decision maker’s preferences, which may change in time and thus they
need to be progressively assessed as an integral part of the decision making process.
Naturally, the assessment of preferences should be done in such a way that the future
preferences are assessed consistently with the present ones. This survey is focusing
on this aspect of time consistency of a dynamic decision making process.

Traditionally, in finance and economics, the preferences are aimed at ordering cash
and/or consumption streams. A convenient way to study preferences is to study them
via numerical representations, such as (dynamic) risk measures, (dynamic) perfor-
mance measures, or, more generally, dynamic LM-measures1 (Bielecki et al. 2014a).
Consequently, the study of the time consistency of preferences is also conveniently
done in terms of their numerical representations. This work is meant to survey var-
ious approaches to modelling and analysis of the time consistency of numerical
representations of preferences.

As stated above, the objects of our survey—the dynamic LM-measures—are
meant to “put a preference order” on the sets of underlying entities. There exists a
vast literature on the subject of preference ordering, with various approaches towards
establishing an order of choices, such as the decision theory or the expected util-
ity theory, that trace their origins to the mid 20th century. We focus our attention,
essentially, on the axiomatic approach to defining risk or performance measures.

The axiomatic approach to measuring risk of a financial position was initiated
in the seminal paper by Artzner et al. (1999), and has been going through a flour-
ishing development since then. The measures of risk introduced in (Artzner et al.
1999), called coherent risk measures, were meant to determine the regulatory capital
requirement by providing a numerical representation of the riskiness of a portfolio
of financial assets. In this framework, from mathematical point of view, the financial
positions are understood as either discounted terminal values (payoffs) of portfolios,
that are modeled in terms of random variables, or they are understood as discounted
dividend processes, cumulative or bullet, that are modeled as stochastic processes.
Although stochastic processes can be viewed as random variables (on appropriate
spaces), and vice versa - random variables can be treated as particular cases of
processes—it is convenient, and in some instances necessary, to treat these two cases
separately—the road we are taking in this paper.

In the paper (Artzner et al. 1999), the authors considered the case of random
variables, and the risk measurement was done at time zero only. This amounts to con-
sidering a one period time model in the sense that the measurement is done today
of the cash flow that is paid at some fixed future time (tomorrow). Accordingly, the
related risk measures are referred to as static measures. Since then, two natural paths
were followed: generalizing the notion of risk measure by relaxing or changing the
set of axioms, or/and considering a dynamic setup. By dynamic setup we mean that
the measurements are done throughout time and are adapted to the flow of available

1An LM-measure is a function that is local and monotone; see Definition 1. These two properties have to
be satisfied by any reasonable dynamic measure of performance and/or measure of risk, and are shared by
most such measures in the existing literature.
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information. In the dynamic setup, both discrete and continuous time evolutions have
been studied, for both random variables and stochastic processes as the inputs. In the
present work, we focus our attention on the discrete time setup, although we briefly
review the literature devoted to continuous time.

This survey is organized as follows. We start with the literature review relevant to
the dynamic risk and performance measures focusing on the time consistency prop-
erty in the discrete time setup. In Section “Mathematical preliminaries”, we set the
mathematical scene; in particular, we introduce the main notations used in this paper
and the notion of LM-measures. Section “Approaches to time consistent assessment
of preferences” is devoted to the time consistency property. There we discuss two
generic approaches to time consistent assessment of preferences and point out sev-
eral idiosyncratic approaches. We put forth in this section the notion of an update
rule that, we believe, is the key tool for studying time consistency in a unified frame-
work. Sections “Time consistency for random variables” and “Time consistency for
stochastic processes” survey some concepts and results regarding time consistency in
the case of random variables and in the case of stochastic processes, respectively. Our
survey is illustrated by numerous examples that are presented in Section “Examples”.
We end the survey with two appendices. In “Appendix” we provide a brief
exposition of the three fundamental concepts used in the paper: the dynamic LM-
measures, the conditional essential suprema/infima, and LM-extensions. Finally, in
Appendix “Proofs” we collect proofs of several results stated throughout our survey.

Literature review

The aim of this section is to give a chronological survey of the developments of the
theory of dynamic risk and performance measures. Although it is not an obvious task
to establish the exact lineup, we tried our best to account for the most relevant works
according to adequate chronological order.

We trace back the origins of the research regarding time consistency to
Koopmans (1960) who put on the precise mathematical footing, in terms of the utility
function, the notion of persistency over time of the structure of preferences.

Subsequently, in the seminal paper, Kreps and Porteus (1978) treat the time consis-
tency at a general level by axiomatising the “choice behavior” of an agent by taking
into account how choices at different times are related to each other; in the same
work, the authors discuss the motivations for studying the dynamic aspect of choice
theory.

Before we move on to reviewing the works on dynamic risk and performance
measures, it is worth mentioning that the robust expected utility theory proposed by
Gilboa and Schmeidler (1989) can be viewed as a more comprehensive theory than
the one discussed in (Artzner et al. 1999); we refer to (Roorda et al. 2005) for the
relevant discussion.

Starting with (Artzner et al. 1999), the axiomatic theory of risk measures, under-
stood as functions mapping random variables into real numbers, was developing
around the following main goals: a) to define a set of properties (or axioms) that
a risk measure should satisfy; b) to characterize all functions that satisfy these
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properties; c) provide particular examples of such functions. Each of the imposed
axioms should have a meaningful financial or actuarial interpretation. For exam-
ple, in (Artzner et al. 1999), a static coherent risk measure is defined as a function
ρ : L∞ → [−∞, ∞] that is monotone decreasing (larger losses imply larger risk),
cash-additive (the risk is reduced by the amount of cash added to the portfolio today),
sub-additive (a diversified portfolio has a smaller risk) and positive homogenous (the
risk of a rescaled portfolio is rescaled correspondingly), where L∞ is the space of
(essentially) bounded random variables on some probability space (�,F, P)2. The
descriptions or the representations of these functions, also called robust representa-
tions, usually are derived via duality theory in convex analysis, and are necessary
and sufficient in their nature. Traditionally, among such representations we find:
representations in terms of the level or the acceptance sets; numerical representa-
tions in terms of the dual pairings (e.g., expectations). For example, the coherent
risk measure ρ mentioned above can be described in terms of its acceptance set
Aρ = {X ∈ L∞ | ρ(X) ≤ 0}. As it turns out, the acceptance set Aρ satisfies certain
characteristic properties, and any set A with these properties generates a coherent
risk measure via the representation ρ(X) = inf{m ∈ R | m + X ∈ A}. Alternatively,
the function ρ is a coherent risk measure if and only if there exists a nonempty set Q
of probability measures, absolutely continuous with respect to P, such that

ρ(X) = − inf
Q∈Q

EQ[X ]. (1)

The set Q can be viewed as a set of generalized scenarios, and a coherent risk
measure is equal to the worst expected loss under various scenarios. By relaxing the
set of axioms, the static coherent risk measures were generalized to static convex
risk measures and to an even more general class called monetary risk measures. See,
for instance, (Szegö 2002) for a survey of static risk measures, as well as (Cheridito
and Li 2009, 2008). On the other hand, axiomatic theory of performance measures
was originated in (Cherny and Madan 2009). A general theory of risk preferences
and their robust representations, based on only two generic axioms, was studied in
(Drapeau 2010, Drapeau and Kupper 2013).

Moving to the dynamic setup, we first introduce an underlying filtered probability
space (�,F, {Ft }t≥0, P), where the increasing collection of σ -algebras Ft , t ≥ 0,

models the flow of information that is accumulated through time.
Artzner et al. (2002b) and (Artzner et al. 2002a) study an extension of the static

models examined in (Artzner et al. 1999) to the multiperiod case, assuming discrete
time and discrete probability space. The authors proposed a method of constructing
dynamic risk measures {ρt : L∞(FT ) → L̄0(Ft ), t = 0, 1 . . . , T }, by a backward
recursion, starting with ρT (X) = −X , and letting

ρt (X) = − inf
Q∈Q

EQ[−ρt+1(X) | Ft ], 0 ≤ t < T, (2)

where, as before, Q is a set of probability measures. If, additionally, Q satisfies a
property called recursivity or consistency (cf. (Riedel 2004)), namely

2In the original paper (Artzner et al. 1999), the authors considered finite probability spaces, but later the
theory was elevated to a general probability space (Delbaen 2000, 2002).
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inf
Q∈Q

EQ[Z | Ft ]= inf
Q∈Q

EQ[ inf
Q1∈Q

EQ1[Z |Ft+1] |Ft ], t= 0,1, . . . ,T−1, Z ∈ L∞,

(3)
then one can show that (2) is equivalent to

ρt (X) = ρt (−ρt+1(X)), 0 ≤ t < T, X ∈ L∞(FT ). (4)

The property (4) represents what has become known in the literature as the strong
time consistency property. For example, if Q = {P}, then the strong time consistency
reduces to the tower property for conditional expectations. From a practical point of
view, this property essentially means that assessment of risks propagates in a consis-
tent way over time: assessing at time t future risk, represented by random variable X,
is the same as assessing at time t a risky assessment of X done at time t+1 and repre-
sented by −ρt+1(X). Additionally, the property (4) is closely related to the Bellman
principle of optimality or to the dynamic programming principle (see, for instance,
(Bellman and Dreyfus 1962; Carpentier et al. 2012).

Delbaen (2006) studies the recursivity property in terms of m-stable sets of prob-
ability measures, and also describes the time consistency of dynamic coherent risk
measures in the context of martingale theory. The recursivity property is equivalent
to properties known as time consistency and the rectangularity in the multi-prior
Bayesian decision theory. Epstein and Schneider (2003) study time consistency and
rectangularity property in the framework of “decision under ambiguity.”

It needs to be said that several authors refer to (Wang 2002) for an alternative
axiomatic approach to time consistency of dynamic risk measures.

The first study of dynamic risk measures for stochastic processes (finite probabil-
ity space and discrete time) is attributed to Riedel (2004), where the author introduced
the (strong) time consistency as one of the axioms. If ρt , t = 0, . . . , T, is a dynamic
coherent risk measure, acting on the set of discounted terminal cash flows3, then ρ is
strongly time consistent if the following implication holds true:

ρt+1(X) = ρt+1(Y ) ⇒ ρt (X) = ρt (Y ). (5)

This means that if tomorrow we assess the riskiness of X and Y at the same level,
then today X and Y must have the same level of riskiness. It can be shown that
for dynamic coherent risk measures, or more generally for dynamic monetary risk
measures, property (5) is equivalent to (4).

Motivated by results regarding the pricing procedure in incomplete markets, based
on use of risk measures, Roorda et al. (2005) study dynamic coherent risk measures
(for the case of random variables on finite probability space and discrete time) and
introduce the notion of (strong) time consistency; note that their work was similar and
contemporaneous to (Riedel 2004). They show that strong time consistency entails
recursive computation of the corresponding optimal hedging strategies. Moreover,
time consistency is also described in terms of the collection of probability measures
that satisfy the “product property,” similar to the rectangularity property mentioned
above.

3In (Riedel 2004), the author considered discounted dividend processes, but for simplicity here we write
the time consistency for random variables.
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Similarly, as in the static case, the dynamic coherent risk measures were extended
to dynamic convex risk measures by replacing sub-additivity and positive homogene-
ity properties with convexity. In the continuous time setup, Rosazza Gianin (2002)
links dynamic convex risk measures to nonlinear expectations or g-expectations, and
to Backward Stochastic Differential Equations (BSDEs). Strong time consistency
plays a crucial role and, in view of (4), it is equivalent to the tower property for
conditional g-expectations. These results are further studied in a sequel of papers
(Frittelli and Rosazza Gianin 2004; Peng 2004; Rosazza Gianin 2006), as well as in
Coquet et al. (2002).

A representation similar to (1) holds true for dynamic convex risk measure

ρt (X) = − inf
Q∈M(P)

(
EQ[X | Ft ] + αmin

t (Q)
)

, t = 0, 1, . . . , T, (6)

where M(P) is the set of all probability measures absolutely continuous with respect
to P, and αmin is the minimal penalty function.4 The natural question of describ-
ing (strong) time consistency in terms of properties of the minimal penalty functions
was studied by Scandolo (2003). Also in (Scandolo 2003), the author discusses the
importance in the dynamic setup of the special property called locality. It should
be mentioned that locality property was part of the earlier developments in the the-
ory of dynamic risk measures. For example, it was called dynamic relevance axiom
in (Riedel 2004), and zero-one law in (Peng 2004). Similarly to previous studies,
(Scandolo 2003) finds a relationship between time consistency, the recursive con-
struction of dynamic risk measures, and the supermartingale property. These results
are further investigated in Detlefsen and Scandolo (2005). Also in these works, it was
shown that the dynamic entropic risk measure is a strongly time consistent convex
risk measure.

Weber (2006) continues the study of dynamic convex risk measures for ran-
dom variables in a discrete time setup and introduces weaker notions of time
consistency acceptance and rejection time consistency. Mainly, the author stud-
ies the law invariant risk measures, and characterizes time consistency in terms
of the acceptance indicator at (X) = 1ρt (X)≤0 and in terms of the acceptance
sets of the form Nt = {X | ρt (X) ≤ 0}. Along the same lines, Föllmer
and Penner (2006) investigate the dynamic convex risk measures, representation
of strong time consistency as a recursivity property, and they relate it to the
Bellman principle of optimality. They also prove that the supermartingale prop-
erty of the penalty function corresponds to the weak or acceptance/rejection time
consistency. Moreover, the authors study the co-cycle property of the penalty func-
tion for the dynamic convex risk measures that admit robust representation (see
Definition 50).

Artzner et al. (2007) continue to study the strong time consistency for dynamic
risk measures, its equivalence with the stability property of test probabilities and with
the optimality principle.

4See Appendix “Robust representations for dynamic monetary utility measures” for the definition of
minimal penalty functions, up to a sign, and for the corresponding robust representations.
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It is worth mentioning that Bion-Nadal (2004) studies dynamic monetary risk mea-
sures in a continuous time setting and their time consistency property in the context
of model uncertainty when the class of probability measures is not specified.

Motivated by optimization subject to risk criterion, Ruszczynski and
Shapiro (2006a) elevate the concepts from (Ruszczyński and Shapiro 2006b) to the
dynamic setting, with the main goal to establish conditions under which the dynamic
programming principle holds.

Cheridito and Kupper (2011) introduce the notion of aggregators and generators
for dynamic convex risk measures and give a thorough discussion about the com-
position of time-consistent convex risk measures in the discrete time setup, for both
random variables and stochastic processes. They link time consistency to one step
dynamic penalty functions. In this regard, we also refer to (Cheridito et al. 2006;
Cheridito and Kupper 2009).

Jobert and Rogers (2008) take the valuation concept as the starting point, rather
than the dynamics of acceptance sets, with the valuation functional being the nega-
tive of a risk measure. To quote the authors (strong) “time consistency is the heart
of the matter.” Kloeppel and Schweizer (2007) use dynamic convex risk measures
for valuation in incomplete markets, where the time consistency plays a key role.
Cherny (2007) uses dynamic coherent risk measure for pricing and hedging European
options; see also (Cherny and Madan 2006).

Roorda and Schumacher (2007) study the weak form of time consistency for
dynamic convex risk measure.

Bion-Nadal (2006) continues to study various properties of dynamic risk mea-
sures, both in discrete and in continuous time, mainly focusing on the composition
property mentioned above, and thus on the strong time consistency. The composition
property is characterized in terms of stability of probability sets. The author defines
the co-cycle condition for the penalty function and shows its equivalence to strong
time consistency. In the followup paper, (Bion-Nadal 2008), the author continues to
study the characterization of time consistency in terms of the co-cycle condition for
minimal penalty function. For further related developments in the continuous time
framework see (Bion-Nadal 2009b).

Observing that Value at Risk (V@R) is not strongly time consistent, Boda and
Filar (2006), and Cheridito and Stadje (2009) construct a strongly time consistent
alternative to V@R by using a recursive composition procedure.

Tutsch (2008) gives a different perspective on time consistency of convex risk
measures by introducing the update rules5 and generalizes the strong and weak form
of time consistency via test sets.

The theory of dynamic risk measures finds its application in areas beyond the reg-
ulatory capital requirements. For example, Cherny (2010) applies dynamic coherent
risk measures to risk-reward optimization problems and in (Cherny 2009) to capi-
tal allocation; Bion-Nadal (2009a) uses dynamic risk measures for time consistent
pricing; Barrieu and El Karoui (2004; 2005; 2007) study optimal derivatives design
under dynamic risk measures; Geman and Ohana (2008) explore the time consistency

5In the present manuscript, we also use the name ‘update rules’, although the concept used here is different
from that introduced in (Tutsch 2008).
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in managing a commodity portfolio via dynamic risk measures; Zariphopoulou and
Zitkovic (2010) investigate the maturity independent dynamic convex risk measures.

In Delbaen et al. (2010), the authors establish a representation of the penalty func-
tion of dynamic convex risk measure using g-expectation and its relation to the strong
time consistency.

There exists a significant literature on a special class of risk measures that sat-
isfy the law invariance property. Kupper and Schachermayer (2009) prove that the
only relevant, law invariant, strongly time consistent risk measure is the entropic risk
measure.

For a fairly general study of dynamic convex risk measures and their time con-
sistency we refer to (Bion-Nadal and Kervarec 2012) and (Bion-Nadal and Kervarec
2010). Acciaio et al. (2012) give a comprehensive study of various forms of time
consistency for dynamic convex risk measures in a discrete time setup. This includes
strong and weak time consistency, representations of time consistency in terms of
acceptance sets, and the supermartingale property of the penalty function. We would
like to point out the survey by Acciaio and Penner (2011) of discrete time dynamic
convex risk measures. This work deals with (essentially bounded) random variables
and examines most of the papers mentioned above from the perspective of the robust
representation framework.

Although the connection between BSDEs and the dynamic convex risk measures
in a continuous time setting had been established for some time, it appears that
Stadje (2010) was the first author to create a theoretical framework for studying
dynamic risk measures in discrete time via the Backward Stochastic Difference Equa-
tions (BS�Es). Due to the backward nature of BS�Es, the strong time consistency
of risk measures played a critical role in characterizing the dynamic convex risk mea-
sures as solutions of BS�Es. In a series of papers, Cohen and Elliott further studied
the connection between dynamic risk measures and BS�Es (Cohen and Elliott 2010,
2011; Elliott et al. 2015).

Föllmer and Penner (2011) developed the theory of dynamic monetary risk mea-
sures under Knightian uncertainty, where the corresponding probability measures
are not necessarily absolutely continuous with respect to the reference measure. See
also Nutz and Soner (2012) for a study of dynamic risk measures under volatility
uncertainty and their connection to G-expectations.

From a slightly different point of view, Ruszczynski (2010) studies Markov risk
measures, that enjoy strong time consistency, in the framework of risk-averse pref-
erences; see also (Shapiro 2009, 2011, 2012; Fan and Ruszczyński 2014). Some
concepts from the theory of dynamic risk measures are adopted to the study of the
dynamic programming for Markov decision processes.

In the recent paper, Mastrogiacomo and Rosazza Gianin (2015) provide several
forms of time consistency for sub-additive dynamic risk measures and their dual
representations.

Finally, we want to mention that during the last decade significant advances were
made towards developing a general theory of set-valued risk measures (Hamel and
Rudloff 2008; Hamel et al. 2011; Feinstein and Rudloff 2013; Hamel et al. 2013;
Feinstein and Rudloff 2015), including the dynamic version of them, where mostly
the corresponding form of strong time consistency is considered.
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We recall that the main objective of use of risk measures for financial applications
is mapping the level of risk of a financial position to a regulatory monetary amount
expressed in units of the relevant currency. Accordingly, the key property of any risk
measure is cash-additivity ρ(X −m) = ρ(X) +m. Clearly, one can think of the risk
measures as generalizations of V@R.

A concept that is, in a sense, complementary to the concept of risk measures, is
that of performance measures, which can be thought as generalizations of the well
known Sharpe ratio. In similarity with the theory of risk measures, the development
of the theory of performance measures followed an axiomatic approach. This was ini-
tiated by Cherny and Madan (2009), where the authors introduced the (static) notion
of the coherent acceptability index–a function on L∞ with values in R+ that is mono-
tone, quasi-concave, and scale invariant. As a matter of fact, scale invariance is the
key property of acceptability indices that distinguishes them from risk measures, and,
typically, acceptability indices are not cash-additive. The dynamic version of coher-
ent acceptability indices was introduced by Bielecki et al. (2014b), for the case of
stochastic processes, finite probability space, and discrete time. From now on, we
will use as synonyms the terms measures of performance, performance measures,
and acceptability indices.

As it turns out, the time consistency for measures of performance is a delicate
issue. None of the forms of time consistency, which had been coined for dynamic
risk measures, are appropriate for dynamic performance measures. In (Bielecki et
al. 2014b), the authors introduce a new form of time consistency that is suitable
for dynamic coherent acceptability indices. Let αt , t = 0, 1, . . . , T , be a dynamic
coherent acceptability index acting on L∞ (i.e., discounted terminal cash flows). We
say that α is time consistent if the following implications hold true:

αt+1(X) ≥ mt ⇒ αt (X) ≥ mt ,

αt+1(X) ≤ nt ⇒ αt (X) ≤ nt , (7)

where X ∈ L∞, and mt , nt are Ft -measurable random variables. Biagini and
Bion-Nadal (2014) study dynamic performance measures in a fairly general setup
that generalize the results of (Bielecki et al. 2014b). Later, using the theory of
dynamic coherent acceptability indices developed in (Bielecki et al. 2014b), Bielecki
et al. (2013) propose a pricing framework, called dynamic conic finance, for divi-
dend paying securities in discrete time. The time consistency property was at the core
of establishing the connection between dynamic conic finance and classical arbi-
trage pricing theory. The static conic finance, that served as motivation for (Bielecki
et al. 2013), was introduced in (Cherny and Madan 2010). Finally, in recent papers
(Bielecki et al. 2015b, Rosazza Gianin and Sgarra 2013), the authors elevate the
notion of dynamic coherent acceptability indices to the case of sub-scale invariant
performance measures. For that, BSDEs are used in (Rosazza Gianin and Sgarra
2013) and BS�Es are used in (Bielecki et al. 2015b).

For a general theory of robust representations of quasi-concave maps that
covers both dynamic risk measures and dynamic acceptability indices, see
(Frittelli and Maggis 2011; Bielecki et al. 2016; Frittelli and Maggis 2014;
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Bion-Nadal 2016). Also in (Bielecki et al. 2016), the authors study the strong time
consistency of quasi-concave maps via the concept of certainty equivalence; see also
(Frittelli and Maggis 2010).

To our best knowledge, (Bielecki et al. 2014a) is the only paper that combines into
a unified framework the time consistency for dynamic risk measures and dynamic
performance measure. It uses the concept of update rules that serve as a vehicle for
connecting preferences at different times. We take the update rules perspective as the
main tool for surveying the existing forms of time consistency.

We conclude this literature review by listing works, which in our opinion, are most
relevant to this survey (not all of which are mentioned above though).

Dynamic coherent risk measures

• random variables, strong time consistency: Artzner et al. 2002a, 2002b;
Roorda 2005.

• stochastic processes, strong time consistency: Riedel 2004; Artzner et al. 2007.

Dynamic convex risk measures,

• random variables, strong time consistency: (discrete time) (Bion-Nadal 2006;
Boda and Filar 2006; Cheridito and Stadje 2009; Detlefsen and Scandolo 2005;
Föllmer and Penner 2006; Frittelli and Scandolo 2006; Geman and Ohana 2008;
Ruszczyński and Shapiro 2006a; Scandolo 2003), (Acciaio and Penner 2011;
Acciaio et al. 2012; Bielecki et al. 2014a; Bielecki et al. 2016; Bion-Nadal 2008;
Cheridito and Kupper 2009; Cohen and Elliott 2010, 2011; Elliott et al. 2015;
Fasen and Svejda 2012; Iancu et al. 2015; Kupper and Schachermayer 2009;
Mastrogiacomo and Rosazza Gianin 2015; Roorda and Schumacher 2015;
Stadje 2010);
(continuous time) (Barrieu and El Karoui 2004, 2007; Bion-Nadal 2006, 2008,
2009b; Bion-Nadal and Kervarec 2012; Delbaen 2012; Delbaen et al. 2010;
Frittelli and Rosazza Gianin 2004; Jiang 2008; Klöppel and Schweizer 2007;
Nutz and Soner 2012; Penner and Réveillac 2014; Rosazza Gianin 2002, 2006;
Sircar and Sturm 2015).

• random variables, supermartingale time consistency: (Scandolo 2003; Detlefsen
and Scandolo 2005).

• random variables, acceptance/rejection time consistency: (Acciaio et al. 2012;
Bielecki et al. 2014a; Föllmer and Penner 2006; Roorda and Schumacher 2007,
2015; Tutsch 2008; Weber 2006).

• stochastic processes, strong and supermartingale time consistency: (discrete
time) (Bielecki et al. 2014a; Scandolo 2003), (continuous time) (Jobert and
Rogers 2008)

Dynamic monetary risk measures, strong time consistency:
(discrete time) (Cheridito and Kupper (2011); Cheridito et al. (2006)); (continuous

time) (Bion-Nadal 2004; Föllmer and Penner 2011).
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Dynamic acceptability indices: (Bielecki et al. (2014b); Biagini and Bion-Nadal
(2014); Bielecki et al. (2013); Rosazza Gianin and Sgarra (2013); Bielecki et al.
(2016); Frittelli and Maggis (2014); Bielecki et al. (2014a); Bielecki et al. (2015b)).

Mathematical preliminaries

Let (�,F,F = {Ft }t∈T, P) be a filtered probability space, with F0 = {�,∅}, and
T = {0, 1, . . . , T }, where T ∈ N is a fixed and finite time horizon. We will also use
the notation T

′ = {0, 1, . . . , T − 1}.
For G ⊆ F we denote by L0(�,G, P) and L̄0(�,G, P) the sets of all G-

measurable random variables with values in (−∞, ∞) and [−∞, ∞], respectively.
In addition, we use the notation L p(G) := L p(�,G, P), L p

t := L p(Ft ), and
L p := L p

T , for p ∈ {0, 1, ∞}; analogously we define L̄0
t . We also use the nota-

tion V
p := {(Vt )t∈T : Vt ∈ L p

t }, for p ∈ {0, 1, ∞}.6 Moreover, we use M(P) to
denote the set of all probability measures on (�,F) that are absolutely continuous
with respect to P, and we set Mt (P) := {Q ∈ M(P) : Q|Ft = P|Ft }.

Throughout this paper, X relates to either the space of random variables L p, or the
space of adapted processes Vp. If X = L p, then the elements X ∈ X are interpreted
as discounted terminal cash flow. On the other hand, if X = V

p, then the elements
of X are interpreted as discounted dividend processes. All concepts developed for
X = V

p can be easily adapted to the case of the cumulative discounted value pro-
cesses. The case of random variables can be viewed as a particular case of stochastic
processes by considering cash flow with only the terminal payoff, i.e., stochastic pro-
cesses such that V = (0, . . . , 0, VT ). Nevertheless, we treat this case separately for
transparency. In both cases, we consider the standard pointwise order, understood
in the almost sure sense. In what follows, we also make use of the multiplication
operator denoted as ·t and defined by:

m ·t V := (V0, . . . , Vt−1,mVt ,mVt+1, . . .),

m ·t X := mX, (8)

for V ∈ {(Vt )t∈T | Vt ∈ L0
t

}
, X ∈ L0, m ∈ L∞

t , and t ∈ T. In order to ease the
notation, if no confusion arises, we drop ·t from the above product, and we simply
write mV and mX instead of m ·t V and m ·t X , respectively. For any t ∈ T we set

1{t} :=
⎧⎨
⎩

(0, 0, . . . , 0︸ ︷︷ ︸
t

, 1, 0, 0, . . . , 0), if X = V
p,

1 if X = L p.

For any m ∈ L̄0
t , the value m1{t} corresponds to a cash flow of size m received at

time t. We use this notation for the case of random variables to present more unified
definitions (see Appendix “Dynamic LM-measures”).

6Unless otherwise specified, it will be understood in the rest of the paper that p ∈ {0, 1,∞}.
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Remark 1 We note that the space Vp, endowed with the multiplication ·t , does
not define a proper L0–module (Filipovic et al. 2009; Vogelpoth 2009) (e.g., in
general, 0 ·t V �= 0). However, in what follows, we will adopt some concepts from
L0-module theory, which naturally fit into our study. We refer the reader to (Bielecki
et al. 2015a, 2016) for a thorough discussion on this matter.

We use the convention ∞−∞ = −∞+∞ = −∞ and 0 ·±∞ = 0. Note that the
distributive law does not hold true in general: (−1)(∞ − ∞) = ∞ �= −∞ + ∞ =
−∞. For t ∈ T and X ∈ L̄0 define the (generalized) Ft -conditional expectation of X
by

E[X |Ft ] := E[X+|Ft ] − E[X−|Ft ],
where X+ = (X ∨ 0) and X− = (−X ∨ 0). See Appendix “Conditional expectation
and conditional essential supremum/infimum” for some relevant properties of the
generalized expectation.

For X ∈ L̄0 and t ∈ T, we will denote by ess inft X the unique (up to a set of
probability zero), Ft -measurable random variable, such that

ess inf
ω∈A

X = ess inf
ω∈A

(ess inft X), (9)

for any A ∈ Ft . We call this random variable the Ft -conditional essential infimum
of X. Similarly, we define ess supt (X) := −ess inft (−X), and we call it the Ft -
conditional essential supremum of X. Again, see Appendix “Conditional expectation
and conditional essential supremum/infimum” for more details and some elementary
properties of conditional essential infimum and supremum.

The next definition introduces the main object of this work.

Definition 1 A family ϕ = {ϕt }t∈T of maps ϕt : X → L̄0
t is a Dynamic LM-

measure if ϕ satisfies

1) (Locality) 1Aϕt (X) = 1Aϕt (1A ·t X);
2) (Monotonicity) X ≤ Y ⇒ ϕt (X) ≤ ϕt (Y );

for any t ∈ T, X, Y ∈ X and A ∈ Ft .

It is well recognized that locality and monotonicity are two properties that must
be satisfied by any reasonable dynamic measure of performance and/or measure of
risk, and in fact are shared by most, if not all, of such measures studied in the lit-
erature. The monotonicity property is natural for any numerical representation of an
order between the elements of X . The locality property (also referred to as regularity,
or zero-one law, or relevance) essentially means that the values of the LM-measure
restricted to a set A ∈ F remain invariant with respect to the values of the arguments
outside of the same set A ∈ F ; in particular, the events that will not happen in the
future do not affect the value of the measure today.

Remark 2 While in most of the literature the axiom of locality is not stated
directly, it is very often implied by other assumptions. For example, if X = L∞, then
monotonicity and cash-additivity imply locality (cf. (Pitera 2014), Proposition 2.2.4).
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Similarly, any convex (or concave) map is also local (cf. (Detlefsen and Scandolo
2005)). It is also worth mentioning that locality is strongly related to time consis-
tency. In fact, in some papers locality is considered as a part of the time consistency
property discussed below (see e.g. (Detlefsen and Scandolo 2009)).

In this paper, we only consider dynamic LM-measures ϕ, such that

0 ∈ ϕt [X ], (10)

for any t ∈ T. We impose this (technical) assumption to ensure that the maps ϕt that
we consider are not degenerate in the sense that they are not taking infinite values for
all X ∈ X on some set At ∈ Ft of positive probability, for any t ∈ T; in the literature,
sometimes such maps are referred to as proper (Kaina and Rüschendorf 2009). If this
is the case, then there exists a family {Yt }t∈T, where Yt ∈ X , such that ϕt (Yt ) ∈ L0

t
for any t ∈ T, and so we can consider maps ϕ̃ given by ϕ̃t (·) := ϕt (·) − ϕt (Yt ), that
satisfy assumption (10) and preserve the same order as the maps ϕt do. Typically,
in the risk measure framework, one assumes that ϕt (0) = 0, which implies (10).
However, here we cannot assume that ϕt (0) = 0, as we will also deal with dynamic
performance measures for which ϕt (0) = ∞.

Finally, let us note that in the literature, traditionally the dynamic risk measures
are monotone decreasing. On the other hand, the measures of performance are mono-
tone increasing. In view of condition 2) in Definition 1, whenever our LM-measure
corresponds to a dynamic risk measure, it needs to be understood as the negative of
that risk measure. In such cases, in order to avoid confusion, we refer to the respec-
tive LM-measure as to dynamic (monetary) utility measure rather than as dynamic
(monetary) risk measure. See Appendix “Dynamic LM-measures” for details.

Approaches to time consistent assessment of preferences

In this section, we present a brief survey of approaches to time consistent assessment
of preferences, or to time consistency—for short, that were studied in the literature.
As discussed in the Introduction, time consistency is studied via numerical represen-
tations of preferences. Various numerical representations will be surveyed below, and
discussed in the context of dynamic LM-measures.

To streamline the presentation, we focus our attention on the case of random
variables, that is X = L p, for p ∈ {0, 1, ∞}.7 Usually, the risk measures and the per-
formance measures are studied on spaces smaller than L0, such as L p, p ∈ [1, ∞].
This is motivated by the aim to obtain so called robust representation of such mea-
sures (see Appendix “Dynamic LM-measures”), since a certain topological structure
is required for that (cf. Remark 13). On the other hand, time consistency refers only
to consistency of measurements in time, where no particular topological structure is
needed, and thus most of the results obtained here hold true for p = 0.

7Most of the concepts discussed in this Section can be modified to deal with the case of stochastic
processes, as we will do in Section “Time consistency for stochastic processes”.
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In Section “Generic approaches”, we outline two generic approaches to time con-
sistent assessment of preferences: an approach based on update rules and an approach
based on benchmark families. These two approaches are generic in the sense that
nearly all types of time consistency can be represented within these two approaches.
On the contrary, the approaches outlined in Section “Idiosyncratic approaches” are
specific. That is to say, those approaches are suited only for specific types of time
consistency, specific classes of dynamic LM-measures, specific spaces, etc.

Generic approaches

In this section, we outline two concepts that underlie the generic approaches to time
consistent assessment of preferences: the update rules and the benchmark families. It
will be seen that different types of time consistency can be characterized in terms of
these concepts.

Update rules

The approach to time consistency using update rules was developed in Bielecki et al.
(2014a). An update rule is a tool that is applied to preference levels, and used for
relating assessments of preferences done using a dynamic LM-measure at different
times.

Definition 2 A family μ = {μt,s : t, s ∈ T, t < s} of maps μt,s : L̄0
s → L̄0

t is
called an update rule if μ satisfies the following conditions:

1) (Locality) 1Aμt,s(m) = 1Aμt,s(1Am);
2) (Monotonicity) if m ≥ m′, then μt,s(m) ≥ μt,s(m′);

for any s > t , A ∈ Ft , and m,m′ ∈ L̄0
s .

Next, we give a definition of time consistency in terms of update rules.

Definition 3 Let μ be an update rule. We say that the dynamic LM-measure ϕ is
μ-acceptance (resp. μ-rejection) time consistent if

ϕs(X) ≥ ms (resp. ≤) =⇒ ϕt (X) ≥ μt,s(ms) (resp. ≤), (11)

for all s > t , s, t ∈ T, X ∈ X , and ms ∈ L̄0
s . If property (11) is satisfied for s = t+1,

t ∈ T
′, then we say that ϕ is one-step μ-acceptance (resp. one-step μ-rejection) time

consistent.

We see that ms and μt,s(ms) serve as benchmarks to which the measurements of
ϕs(X) and ϕt (X) are compared, respectively. Thus, the interpretation of acceptance
time consistency is straightforward: if X ∈ X is accepted at some future time s ∈ T,
at least at level ms , then today, at time t ∈ T, it is accepted at least at level μt,s(ms).
Similar reasoning holds for the rejection time consistency. Essentially, the update rule
μ converts the preference levels at time s to the preference levels at time t.
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We started our survey of time consistency with Definition 3 since, as we will
demonstrate below, this concept of time consistency covers various cases of time
consistency for risk and performance measures that can be found in the existing lit-
erature. In particular, it allows to establish important connections between different
types of time consistency. The time consistency property of an LM-measure, in gen-
eral, depends on the choice of the updated rule; we refer to Section “Time consistency
for random variables” for an in-depth discussion.

It is useful to observe that the time consistency property given in terms of update
rules can be equivalently formulated as a version of the dynamic programming
principle (see (Bielecki et al. 2014a), Proposition 3.6): ϕ is μ-acceptance (resp.
μ-rejection) time consistent if and only if

ϕt (X) ≥ μt,s(ϕs(X)) (resp. ≤), (12)

for any X ∈ X and s, t ∈ T, such that s > t . The interpretation of (12) is
as follows: if the numerical assessment of preferences about X is given in terms
of a dynamic LM-measure ϕ, then this measure is μ-acceptance time consistent
if and only if the numerical assessment of preferences about X done at time t is
greater than the value of the measurement done at any future time s > t and
updated at time t via μt,s . The analogous interpretation applies to the ejection time
consistency.

Next, we define two interesting and important classes of update rules.

Definition 4 Let μ be an update rule. We say that μ is

1) s-invariant, if there exists a family {μt }t∈T of maps μt : L̄0 → L̄0
t , such that

μt,s(ms) = μt (ms) for any s, t ∈ T, s > t , and ms ∈ L̄0
s ;

2) projective, if it is s-invariant and μt (mt ) = mt , for any t ∈ T, and mt ∈ L̄0
t .

Remark 3 If an update rule μ is s-invariant, then it is enough to consider only
the corresponding family {μt }t∈T. Hence, with slight abuse of notation, we write
μ = {μt }t∈T and call it an update rule as well.

Example 1 The families μ1 = {μ1
t }t∈T and μ2 = {μ2

t }t∈T given by

μ1
t (m) = E[m|Ft ], and μ2

t (m) = ess inftm, m ∈ L̄0,

are projective update rules. It will be shown in Example 5 that there is a dynamic
LM-measure that is μ2–time consistent but not μ1–time consistent.

Benchmark families

The approach to time consistency based on families of benchmark sets was initiated
by (Tutsch 2008), where the author applied this approach in the context of dynamic
risk measures. Essentially, a benchmark family is a collection of subsets of X that
contain reference or test objects. The idea of time consistency in this context, is that
the preferences about objects of interest must compare in a consistent way to the
preferences about the reference objects.
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Definition 5

(i) A family Y = {Yt }t∈T of sets Yt ⊆ X is a benchmark family if

0 ∈ Yt and Yt + R = Yt ,

for any t ∈ T.
(ii) A dynamic LM-measure ϕ is acceptance (resp. rejection) time consistent with
respect to the benchmark family Y , if

ϕs(X) ≥ ϕs(Y ) (resp. ≤) =⇒ ϕt (X) ≥ ϕt (Y ) (resp. ≤), (13)

for all s ≥ t , X ∈ X , and Y ∈ Ys .

Informally, the “degree” of time consistency with respect to Y is measured by the
size of Y . Thus, the larger the sets Ys are, for each s ∈ T, the stronger the degree of
time consistency of ϕ.

Example 2 The families of sets Y1 = {Y1
t }t∈T and Y2 = {Y2

t }t∈T given by

Y1
t = R and Y2

t = X ,

are benchmark families. They relate to weak and strong types of time consistency, as
will be discussed later on.

For future reference, we recall from (Bielecki et al. 2014a, Proof of Proposition
3.9) that ϕ is acceptance (resp. rejection) time consistent with respect to Y , if and
only if ϕ is acceptance (resp. rejection) time consistent with respect to the benchmark
family Ŷ given by

Ŷt := {Y ∈ X : Y = 1AY1 + 1AcY2, for some Y1, Y2 ∈ Yt and A ∈ Ft }. (14)

Relation between update rule approach and the benchmark approach

The difference between the update rule approach and the benchmark family approach
is that the preference levels are chosen differently. Specifically, in the former
approach, the preference level at time s is chosen as any ms ∈ L̄0

s , and then updated
to the preference level at time t, using an update rule. In the latter approach, the pref-
erence levels at both times s and t are taken as ϕs(Y ) and ϕt (Y ), respectively, for any
reference object Y ∈ Ys , where Ys is an element of the benchmark family Y .

These two approaches are strongly related to each other. Indeed, for any LM-
measure ϕ and for any benchmark family Y , one can construct an update rule μ such
that ϕ is time consistent with respect to Y if and only if it is μ-time consistent.

For example, in case of acceptance time consistency of ϕ with respect to Y , using
the locality of ϕ, it is easy to note that (13) is equivalent to

ϕt (X) ≥ ess sup
A∈Ft

[
1A ess sup

Y∈Y−
A,s (ϕs (X))

ϕt (Y ) + 1Ac (−∞)
]
,
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where Y−
A,s(ms) := {Y ∈ Ŷs : 1Ams ≥ 1Aϕs(Y )} and Ŷ = {Ŷs}s∈T is defined in

(14). Consequently, setting

μ̃t,s(ms) := ess sup
A∈Ft

[
1A ess sup

Y∈Y−
A,s (ms )

ϕt (Y ) + 1Ac(−∞)
]
,

and using (12), we deduce that ϕ satisfies (13) if and only if ϕ is time consistent
with respect to the update rule μ̃t,s (see (Bielecki et al. 2014a, Proposition 3.9) for
details). The analogous argument works for rejection time consistency.

Generally speaking, the converse implication does not hold true; the notion of
time consistency given in terms of update rules is more general. For example, time
consistency of a dynamic coherent acceptability index cannot be expressed in terms
of a single benchmark family.

Idiosyncratic approaches

Each such approach to time consistency of a given LM-measure exploits the idiosyn-
cratic properties of this LM-measure, which are not necessarily shared by other
LM measures, and typically is suited only for a specific subclass of dynamic LM-
measures. For example, in case of dynamic convex or monetary risk measures the
time consistency can be characterized in terms of the relevant properties of associated
acceptance sets and/or the dynamics of the penalty functions and/or the rectangular
property of the families of probability measures. These idiosyncratic approaches, and
the relevant references, were mentioned and briefly discussed in Section “Literature
review”. Detailed analysis of each of these approaches is beyond the scope of this
survey.

Time consistency for random variables

In this section, we survey the time consistency of LM-measures applied to ran-
dom variables. Accordingly, we assume that X = L p, for a fixed p ∈ {0, 1, ∞}.
We proceed with the discussion of various related types of time consistency, with-
out much reference to the existing literature. Such references are provided in
Section “Literature review”.

Weak time consistency

The main idea behind this type of time consistency is that if “tomorrow”, say at
time s, we accept X ∈ L p at level ϕs(X), then “today”, say at time t, we would
accept X at any level less than or equal to ϕs(X), adjusted by the information Ft

available at time t. Similarly, if tomorrow we reject X at level ϕs(X), then today,
we should also reject X at any level greater than or equal to ϕs(X), adapted to the
information Ft .



Page 18 of 52 T. R. Bielecki et al.

Definition 6 A dynamic LM-measure ϕ is weakly acceptance (resp. weakly
rejection) time consistent if

ϕt (X) ≥ ess inftϕs(X), (resp. ϕt (X) ≤ ess suptϕs(X) )

for any X ∈ L p and s, t ∈ T, such that s > t .

Propositions 1 and 2 provide some characterizations of weak acceptance time
consistency.

Proposition 1 Let ϕ be a dynamic LM-measure on L p. The following properties
are equivalent:

1) ϕ is weakly acceptance time consistent.
2) ϕ is μ-acceptance time consistent, where μ is a projective update rule, given by

μt (m) = ess inftm.

3) The following inequality is satisfied

ϕt (X) ≥ ess inf
Q∈Mt (P)

EQ[ϕs(X)|Ft ], (15)

for any X ∈ L p, s, t ∈ T, s > t .
4) For any X ∈ L p, s, t ∈ T, s > t , and mt ∈ L̄0

t , it holds that

ϕs(X) ≥ mt ⇒ ϕt (X) ≥ mt .

Similar results hold true for weak rejection time consistency.

For the proof of the equivalence between 1), 2), and 4), see (Bielecki et al. 2014a,
Proposition 4.3). Regarding 3), note that any measure Q ∈ Mt (P) may be expressed
in terms of a Radon-Nikodym derivative with respect to measure P. In other words,
instead of (26), we may write

ϕt (X) ≥ ess inf
Z∈Pt

E[Zϕs(X)|Ft ],

where Pt := {Z ∈ L1 | Z ≥ 0, E[Z |Ft ] = 1}. Thus, one can show equivalence
between 1) and 3) noting that for any m ∈ L̄0 we get ess inftm = ess infZ∈Pt
E[Zm|Ft ]. See (Bielecki et al. 2014a, Proposition 4.4) for the proof.

It is worth mentioning that Property 4) in Proposition 1 was suggested as the notion
of (weak) acceptance and (weak) rejection time consistency in the context of scale
invariant measures, called acceptability indices (cf. (Biagini and Bion-Nadal 2014;
Bielecki et al. 2014b)).

Usually, the weak time consistency is considered for dynamic monetary risk mea-
sures on L∞ (cf. (Acciaio and Penner 2011) and references therein). This case lends
itself to even more characterizations of this property.

Proposition 2 Let ϕ be a representable dynamic monetary utility measure 8 on
L∞. The following properties are equivalent:

8See Section “Dynamic LM-measures” for details.
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1) ϕ is weakly acceptance time consistent.
2) ϕ is acceptance time consistent with respect to {Yt }t∈T, where Yt = R.
3) For any X ∈ L p and s, t ∈ T, s > t ,

ϕs(X) ≥ 0 ⇒ ϕt (X) ≥ 0. (16)

4) At+1 ⊆ At , for any t ∈ T, such that t < T .
5) For any Q ∈ M(P) and t ∈ T, such that t < T ,

αmin
t (Q) ≥ EQ[αmin

t+1(Q) |Ft ],

where αmin is the minimal penalty function in the robust representation of ϕ.

Analogous results are obtained for weak rejection time consistency.

We note that equivalence of properties 1), 2), and 3) also holds true in the case
of X = L0, and not only for representable, but for any dynamic monetary utility
measure; for the proof, see (Bielecki et al. 2014a, Proposition 4.3). Property 4) is a
characterisation of weak time consistency in terms of acceptance sets, and property 5)
gives a characterisation in terms of the supermartingale property of the penalty func-
tion. For the proof of the equivalence of 3), 4), and 5), see (Acciaio and Penner 2011,
Proposition 33).

The next result shows that weak time consistency is indeed one of the weakest
forms of time consistency, in the sense that the weak time consistency is implied
by any time consistency generated by a projective update rule; we refer to (Bielecki
et al. 2014a, Proposition 4.5) for the proof.

Proposition 3 Let ϕ be a dynamic LM-measure on L p, and let μ be a projective
update rule. If ϕ is μ-acceptance (resp. μ-rejection) time consistent, then ϕ is weakly
acceptance (resp. weakly rejection) time consistent.

Remark 4 An important feature of the weak time consistency is its invariance
with respect to monotone transformations. Specifically, let g : R̄ → R̄ be a
strictly increasing function and let ϕ be a weakly acceptance/rejection time consis-
tent dynamic LM-measure. Then, {g ◦ ϕt }t∈T is also a weakly acceptance/rejection
time consistent dynamic LM-measure.

Remark 5 In the case of general LM-measures, the weak time consistency may
not be characterized as in 2) of Proposition 2. For example, if ϕ is a (normalized)
acceptability index, then ϕt (R) = {0, ∞}, for t ∈ T, which does not agree with 4) in
Proposition 1.

Strong time consistency

As already stated in the Introduction, the origins of the strong form of time consis-
tency can be traced to (Koopmans 1960). Historically, this is the first and the most
extensively studied form of time consistency in dynamic risk measures literature.
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It is fair to mention, that this form of time consistency also appears in the insur-
ance literature, as the iterative property, and it is related to the mean value principle
(Gerber 1974; Goovaerts and De Vylder 1979).

We start with the definition of strong time consistency.

Definition 7 Let ϕ be a dynamic LM-measure on L p. Then, ϕ is said to be strongly
time consistent if

ϕs(X) = ϕs(Y ) =⇒ ϕt (X) = ϕt (Y ), (17)

for any X, Y ∈ L p and s, t ∈ T, such that s > t .

Strong time consistency gains its popularity and importance due to its equiv-
alence to the dynamic programming principle. This equivalence, as well as other
characterisations of strong time consistency, are the subject of the following two
propositions.

Proposition 4 Let ϕ be a dynamic LM-measure on L p. The following properties
are equivalent:

1) ϕ is strongly time consistent.
2) There exists an update rule μ such that ϕ is both μ-acceptance and μ-rejection

time consistent.
3) ϕ is acceptance time consistent with respect to {Yt }t∈T, where Yt = L p.
4) There exists an update rule μ such that for any X ∈ L p, s, t ∈ T, s > t ,

μt,s(ϕs(X)) = ϕt (X). (18)

5) There exists a one-step update rule μ such that for any X ∈ L p, t ∈ T, t < T ,

μt,t+1(ϕt+1(X)) = ϕt (X).

See Appendix “Proofs” for the proof of Proposition 4. Property 4) in this propo-
sition is referred to as Bellman’s principle or the dynamic programming principle.
Also, note that 5) implies that any strongly time consistent dynamic LM-measure
can be constructed using a backward recursion starting from ϕT := 	, where 	 is an
LM-measure. See (Cheridito and Kupper 2011) where the recursive construction for
dynamic risk measures is discussed in details.

An important, and frequently studied, type of strong time consistency is the
strong time consistency for dynamic monetary risk measures on L∞ (cf. (Acciaio
and Penner 2011) and references therein). As the next result shows, there are more
equivalences that are valid in this case.

Proposition 5 Let ϕ be a representable dynamic monetary utility measure on L∞.
The following properties are equivalent:

1) ϕ is strongly time consistent.
2) ϕ is recursive, i.e., for any X ∈ L p, s, t ∈ T, s > t ,

ϕt (X) = ϕt (ϕs(X)).



Probability, Uncertainty and Quantitative Risk  (2017) 2:3 Page 21 of 52

3) At = At,s + As , for all t, s ∈ T, s > t .
4) For any Q ∈ M(P), t, s ∈ T, s > t ,

αmin
t (Q) = αmin

t,s (Q) + EQ[αmin
s (Q) |Ft ].

5) For any X ∈ L p, Q ∈ M(P), s, t ∈ T, s > t ,

ϕt (X) − αmin
t (Q) ≤ EQ[ϕs(X) − αmin

s (Q) |Ft ].

For the proof see, for instance, (Acciaio and Penner 2011, Proposition 14).

Remark 6 (i) In general, for dynamic LM-measures, the strong time consistency
does not imply either the weak acceptance or weak rejection time consistency.
Indeed, let us consider ϕ = {ϕt }t∈T, such that ϕt (X) = t (resp. ϕt (X) = −t) for
all X ∈ L0. Since ϕt (0) = t �≥ ess inftϕs(0) = s (resp. −t �≤ −s), for s > t , we
conclude that ϕ is not weakly acceptance (resp. weakly rejection) time consistent.
However, since ϕt (X) = ϕt (ϕs(X)) for any X ∈ L0, then ϕ is strongly time
consistent. We note, that if the update rule in Definition 7 is projective, as it is
usually the case for dynamic monetary risk measures, then, due to Proposition 3,
the strong time consistency implies the weak time consistency.
(ii) It is worth mentioning that, in principle, strong time consistency is not suited
for acceptability indices (Bielecki et al. 2014b, 2015b; Cherny andMadan 2009).
Let ϕ be a scale invariant dynamic LM-measure, and let A ∈ Fs be such that
P[A] = 1/2, for some s > 0, s ∈ T. Additionally, assume that F0 is trivial. We
consider the sequence of random variables Xn = n1A −1Ac , n ∈ N. By locality
and scale invariance of ϕ, we have that ϕs(Xn) = ϕs(X1), for n ∈ N. If ϕ is
strongly time consistent, then we also have that ϕ0(Xn) = ϕ0(X1), n ∈ N. On
the other hand, any reasonable measure of performance should assess Xn at the
higher level as n increases, which contradicts the fact that ϕ0(Xn) is a constant
sequence.

Robust expectations, submartingales, and supermartingales

The concept of a projective update rule is connected with the concept of the (con-
ditional) nonlinear expectation (see, for instance, (Peng 1997) for the definition
and properties of nonlinear expectation). In (Peng 2004; Rosazza Gianin 2006), the
authors established a link between nonlinear expectations and dynamic risk mea-
sures. One particularly important example of an projective update rule is the standard
conditional expectation operator. Time consistency in L∞ framework, defined in
terms of conditional expectation, was studied in (Detlefsen and Scandolo 2005,
Section 5) and associated with the super(sub)martingale property.

The next result introduces a general class of updates rules that are generated by
conditional expectations and determining families of sets. First, we recall the concept
of the determining family of sets (see, for instance, (Cherny 2006) for more details).

For each t ∈ T define

Pt := {Z ∈ L1 | Z ≥ 0, E[Z |Ft ] = 1}.
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A family of sets D = {Dt }t∈T is a determining family if for any t ∈ T, the set Dt
satisfies the following properties: Dt �= ∅, Dt ⊆ Pt , it is L1-closed, Ft -convex9, and
uniformly integrable.

Proposition 6 Let D be a determining family of sets, and let ϕ be a dynamic LM-
measure. Consider the family of maps φ = {φt }t∈T, φt : L̄0 → L̄0

t , given by the
following robust expectations10

φt (m) = ess infZ∈Dt E[Zm|Ft ]. (19)

Then,

1) the family φ is a projective update rule;
2) if ϕ is φ-acceptance time consistent, then {g ◦ ϕt }t∈T is also φ-acceptance time

consistent, for any increasing and concave function g : R̄ → R.

Remark 7 Classical (static) coherent risk measures defined on L∞ admit robust
representation of the form (1) for some set of probability measuresQ. It is known that
the setQ might not be unique. Consequently, there may exist multiple extensions of ρ
to a map defined on L̄0 (see Appendix “LM-extensions” for the concept of the exten-
sion). Nevertheless, as in (Cherny 2006), one can consider the maximal set D called
determining set of a risk measure, which guarantees the uniqueness of such exten-
sion. The family of maps defined in (19) is an example of a family of such extensions.
Consequently, we see that the coherent risk measures constitute a good starting point
for generation of update rules.

For the proof of Proposition 6, see Appendix “Proofs”. The counterpart of Propo-
sition 6 for rejection time consistency is obtained by taking ess sup instead of ess inf
in (19), and assuming that g is convex.

In the particular case of determining family with Dt = {1}, for any t ∈ T,
the projective update rule takes the form μt (m) = E[m|Ft ], m ∈ L̄0. This is an
important case, as it produces the concept of supermartingale and submartingale time
consistency.

Definition 8 Let ϕ be a dynamic LM-measure on L p. We say that ϕ is super-
martingale (resp. submartingale) time consistent if

ϕt (X) ≥ E[ϕs(X)|Ft ], (resp. ≤)

for any X ∈ L p and t, s ∈ T, s > t .

Remark 8 (i) Note that any dynamic LM-measure that is φ-acceptance time
consistent, where φ is given in (19), is also weakly acceptance time consistent, as
φ is projective. In particular, any supermartingale time consistent LM-measure

9By Ft -convex we mean that for any Z1, Z2 ∈ Dt , and λ ∈ L0
t such that 0 ≤ λ ≤ 1 we get λZ1 + (1 −

λ)Z2 ∈ Dt .
10The term robust is inspired by robust representations of risk measures.
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is also weakly acceptance time consistent. A similar statement holds true for
rejection time consistency.
(ii) As mentioned in (Bielecki et al. 2014a), the idea of update rules might be
used to weight the preferences. Intuitively speaking, the risk of loss in the far
future might be more preferred than the imminent risk of loss. This idea was used
in (Cherny 2010). For example, the update rule μ of the form

μt,s(m, X) =
{

αs−t E[m|Ft ] on {E[m|Ft ] ≥ 0},
αt−s E[m|Ft ] on {E[m|Ft ] < 0}. (20)

for a fixed α ∈ (0, 1) would achieve this goal.

Other types of time consistency

The weak, strong, and super/sub-martingale forms of time consistency have attracted
the most attention in the existing literature. In this section, we present other forms of
time consistency that have been studied.

Middle time consistency

The notion of middle time consistency was originally formulated for dynamic mone-
tary risk measures on L∞ (cf. (Acciaio and Penner 2011)). The main idea is to replace
the equality in (17) by an inequality. The term middle acceptance or middle rejection
is used depending on the direction of the inequality.

Definition 9 A dynamic LM-measure ϕ on L p is middle acceptance (resp. middle
rejection) time consistent if

ϕs(X) ≥ ϕs(Y ) (resp. ≤) =⇒ ϕt (X) ≥ ϕt (Y ) (resp. ≤),

for any X ∈ L p, s, t ∈ T, s > t , and Y ∈ L p ∩ L0
s .

The middle acceptance (resp. middle rejection) time consistency is equivalent
to the acceptance (resp. rejection) time consistency with respect to the benchmark
family Y = {Yt }t∈T, given by Yt = L p∩L0

t . In the case of dynamic convex risk mea-
sures, other characterizations of middle acceptance time consistency are available, as
the following proposition shows.

Proposition 7 Let ϕ be a representable dynamic monetary utility measure on L∞,
which is continuous from above. The following properties are equivalent:

1) ϕ is middle acceptance time consistent.
2) ϕ is ϕ−-acceptance time consistent.11

3) For any X ∈ L p, s, t ∈ T, s > t ,

ϕt (X) ≥ ϕt (ϕs(X)). (21)

11See Appendix “LM-extensions” for the definition of ϕ−
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4) For any X ∈ L p and t ∈ T, such that t < T ,

ϕt+1(X) − ϕt (X) ∈ Rt,t+1.

5) For any X ∈ Rt and t ∈ T, such that t < T ,

ϕt+1(X) ∈ Rt .

6) For any t ∈ T, such that t < T , At ⊇ At,t+1 + At+1.
7) For any Q ∈ M(P) and t ∈ T, such that t < T ,

αmin
t (Q) ≥ αmin

t,t+1(Q) + EQ[αmin
t+1(Q)|Ft ].

7) For any Q ∈ M(P) and t ∈ T, such that t < T ,

ϕt (X) ≥ EQ[ϕt+1(X) | Ft ] + αmin
t,t+1(Q).

Since ϕ− is an LM-extenstion of ϕ, and ϕs(Y ) = Y , for any Y ∈ L p ∩ L̄0
s , the

equivalence between 1) and 2) is immediate. For all other equivalences see (Acciaio
and Penner 2011, Section 4.2) and references therein. Property 1) in Proposition 7 is
sometimes called prudence (see (Penner 2007)).

Time consistency induced by LM-measure

It turns out that any dynamic LM-measure generates an update rule. Indeed, as the
next result shows, any LM-extension of an LM-measure (see Appendix “LM-exten-
sions” for the definition of LM-extension) is an s-invariant update rule.

Proposition 8 Any LM-extension ϕ̂ of a dynamic LM–measure ϕ is an s-invariant
update rule. Moreover, ϕ̂ is projective if and only if ϕt (X) = X, for t ∈ T and
X ∈ L p ∩ L̄0

t .

The proof is deferred to Appendix “Proofs”.
LM-extensions may be used to give stronger forms of strong and middle time

consistency, that are especially well suited in the case of dynamic monetary risk
measures.

Recall that for dynamic monetary risk measure ϕ on L∞, strong time consistency
is equivalent to the property that

ϕt (X) = ϕt (ϕs(X)),

for any X ∈ X , s, t ∈ T, s > t .
However, if X is larger than L∞, then this characterisation is problematic, as we

might get ϕs(X) �∈ X . In this case, LM-extensions come in handy and one defines
strong time consistency via the following equality,

ϕt (X) = ϕ̂t (ϕs(X)), X ∈ X , s, t ∈ T, s > t, (22)

where ϕ̂ is an extension of ϕ from X to L̄0. Accordingly, we say that ϕ is
strongly∗ time consistent, if there exists an LM-extension ϕ̂, of ϕ, such that ϕ is both
ϕ̂-acceptance and ϕ̂-rejection time consistent.
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Note that since ϕ̂ is an update rule, the strong∗ time consistency implies strong
time consistency in the sense of Definition 7. In general, the converse implication is
not true; to see this, it is enough to consider strong time consistency for an update
rule that is not s-invariant.

In the same fashion, we say that ϕ is middle∗ acceptance time consistent, if there
exists an LM-extension of ϕ, say ϕ̂, such that ϕ is ϕ̂-acceptance time consistent.
In view of Proposition 17, this is equivalent to saying that ϕ is middle∗ acceptance
time consistent if it is ϕ−-acceptance time consistent. Likewise, to define middle∗
rejection time consistency we use the mapping ϕ+.

Taxonomy of results

For the convenience of the reader, in Fig. 1 below, we summarize the results sur-
veyed in Section “Time consistency for random variables”. For transparency, we
label (by circled numbers) each arrow (implication or equivalence) in the flowchart,
and we relate the labels to the relevant results, also providing comments on converse
implications whenever appropriate.

1© Proposition 2, 2)
2© Proposition 1, 4)
3© Remark 8 and Proposition 3. The converse implication is not true in general, see

Example 8.

Fig. 1 Summary of results for acceptance time consistency for random variables
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4© Proposition 3. Generally speaking, the converse implication is not true. See
Example 8: the negative of Dynamic Entropic Risk Measure with γ < 0 is
weakly acceptance time consistent, but it is not supermaringale time consistent,
i.e., it is not acceptance time consistent with respect to the projective update rule
μt = Et [m|Ft ].

5© Proposition 4, 4). The converse implication is not true in general. For the
counterexample, see (Acciaio and Penner 2011, Proposition 37).

6© Proposition 3, and see also 4©. In general, strong time consistency does not
imply weak acceptance time consistency, see Remark 6.

7© Proposition 7, 3)
8© This is heuristic statement. See Remark 6.(ii).
9© Proposition 4, 5)

Time consistency for stochastic processes

We preserve the same names for various types of time consistency for both the ran-
dom variables and the stochastic processes. However, we stress that the nature of
time consistency for stochastic processes is usually much more intricate. If ϕ is an
LM-measure, and V ∈ V

p, then in order to compare ϕt (V ) and ϕs(V ), for s > t , one
also needs to take into account the cash flows between times t and s.

In order to account for the intermediate cash flows, we modify appropriately the
concept of the update rule.

Definition 10 The family μ = {μt,s : t, s ∈ T, t < s} of maps μt,s : L̄0
s ×

X → L̄0
t is called a generalized update rule if for any X ∈ X the family μ(·, X) =

{μt,s(·, X) : t, s ∈ T, t < s} is an update rule.

Note that the update rule introduced in Definition 3 may be considered as the
generalized update rule, which is constant with respect to X, i.e., μ(·, X) = μ(·, Y )

for any X, Y ∈ X . In what follows, if there is no ambiguity, we drop the term
generalized.

As before, we say that the update rule μ is s-invariant, if there exists a family
{μt }t∈T of maps μt : L̄0 × X → L̄0

t , such that μt,s(ms, X) = μt (ms, X) for any
s, t ∈ T, s > t , X ∈ X , and ms ∈ L̄0

s .
We now arrive at the corresponding definition of time-consistency.

Definition 11 Let μ be a generalized update rule. We say that the dynamic LM-
measure ϕ is μ-acceptance (resp. μ-rejection) time consistent if

ϕs(X) ≥ ms (resp. ≤) =⇒ ϕt (X) ≥ μt,s(ms, X) (resp. ≤), (23)

for all s, t ∈ T, s > t , X ∈ X , and ms ∈ L̄0
s . In particular, if property (23) is

satisfied for s = t + 1, t = 0, . . . , T , then we say that ϕ is one-step μ-acceptance
(resp. one-step μ-rejection) time consistent.
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Throughout this section, we assume that X = V
p.12 We will focus our attention

on one-step update rules μ such that

μt,t+1(m, V ) = μ̃t,t+1(m) + f (Vt ), t = 0, . . . , T − 1, (24)

where μ̃ is the one-step update rule for random variables, and f : R̄ → R̄ is a
Borel measurable function such that f (0) = 0. Property (24) is postulated primarily
to allow establishing a direct connection between our results and the existing liter-
ature. Moreover, when using one-step update rules of form (24), the one-step time
consistency for random variables is a particular case of one-step time consistency for
stochastic processes by considering cash flows with only terminal payoff, namely
stochastic processes such that V = (0, . . . , 0, VT ).

Finally, we note that for update rules, which admit the so called nested composi-
tion property (cf. (Ruszczyński 2010; Ruszczyński and Shapiro 2006b)),

μt,s(m, V ) = μt,t+1(μt+1,t+2(. . . μs−2,s−1(μs−1,s(m, V ), V ) . . . V ), V ), (25)

we have that μ-acceptance (resp. μ-rejection) time consistency is equivalent to one
step μ-acceptance (resp. μ-rejection) time consistency. This is another reason why
we consider only one step update rules for stochastic processes.

Weak time consistency

We start with the following definition.

Definition 12 A dynamic LM-measure ϕ on V
p is weakly acceptance (resp.

weakly rejection) time consistent if

ϕt (V ) ≥ ess inftϕt+1(V ) + Vt , (resp. ϕt (V ) ≤ ess suptϕt+1(V ) + Vt )

for any V ∈ V
p and t ∈ T, such that t < T .

The next result is the counterpart of Proposition 1 and Proposition 2.

Proposition 9 Let ϕ be a dynamic LM-measure on V
p. The following properties

are equivalent:

1) ϕ is weakly acceptance time consistent.
2) ϕ is μ-acceptance time consistent, where μ is an s-invariant update rule, given

by
μt (m, V ) = ess in ftm + Vt .

3) For any V ∈ V
p and t < T

ϕt (V ) ≥ ess inf
Q∈Mt (P)

EQ[ϕt+1(V )|Ft ] + Vt . (26)

4) For any V ∈ V
p, t < T , and mt ∈ L̄0

t ,

ϕt+1(V ) ≥ mt ⇒ ϕt (V ) ≥ mt + Vt .

12We recall that the elements of Vp are interpreted as discounted dividend processes.
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Additionally, if ϕ is a dynamic monetary risk measure, then the above properties are
equivalent to

5) For any V ∈ V
p and t < T ,

ϕt+1(V ) ≥ 0 ⇒ ϕt (V ) ≥ Vt .

Analogous equivalences are true for weak rejection time consistency.

The proof of Proposition 9 is analogous to the proofs of Proposition 1 and
Proposition 2, and we omit it.

As mentioned earlier, the update rule, and consequently time consistency for
stochastic processes, depends also on the value of the process (the dividend paid) at
time t. In the case of weak time consistency this feature is interpreted as follows: if
tomorrow, at time t + 1, we accept V ∈ V

p at the level greater than mt+1 ∈ Ft+1,
then today at time t, we will accept V at least at the level ess inftmt+1 (i.e., the worst
level of mt+1 adapted to the information Ft ) plus the dividend Vt received today.

Finally, we present the counterpart of Proposition 3 for the case of stochastic
processes.

Proposition 10 Let φ be a projective update rule for random variables and let the
update rule μ for stochastic processes be given by

μt,t+1(m, V ) = φt (m) + Vt , m ∈ L̄0
t+1, V ∈ V

p. (27)

If ϕ is a dynamic one-step LM-measure on V
p, which is μ-acceptance (resp. μ-

rejection) time consistent, then ϕ is weakly acceptance (resp. weakly rejection) time
consistent.

Proposition 10 can be proved in a way analogous to the proof of Proposition 3.

Remark 9 The statement of Proposition 10 remains true if we replace (27) with

μt,t+1(m, V ) = φt (m + Vt ), m ∈ L̄0
t+1, V ∈ V

p.

Indeed, it is enough to note that, for any V ∈ V
p and t < T ,

ϕt (V ) ≥ μt,t+1(ϕt+1(V ), V ) = φt (ϕt+1(V ) + Vt )

≥ φt (ess inft [ϕt+1(V )+Vt ])=ess inft [ϕt+1(V )+Vt ] ≥ ess inftϕt+1(V )+Vt .

Semi-weak time consistency

In this section, we introduce the concept of semi-weak time consistency for stochastic
processes. We have not discussed semi-weak time consistency in the case of random
variables, since, in that case, semi-weak time consistency coincides with the weak
time consistency.

As it was shown, (Bielecki et al. 2014b), none of the forms of time consistency
existing in the literature at the time when that paper was written were suitable for
scale-invariant maps such as acceptability indices. In fact, even the weak accep-
tance and the weak rejection time consistency for stochastic processes (as defined
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in the present paper) are too strong in the case of scale invariant maps. This is
a reason why we introduce yet a weaker notion of time consistency, which we
will refer to as semi-weak acceptance and semi-weak rejection time consistency.
The notion of semi-weak time consistency for stochastic processes, introduced
next, is well suited for scale-invariant maps; we refer the reader to (Bielecki et al.
2014b) for a detailed discussion on time consistency for such maps and their dual
representations.13

Definition 13 Let ϕ be a dynamic LM-measure on V
p. Then, ϕ is semi-weakly

acceptance time consistent if

ϕt (V ) ≥ 1{Vt≥0}ess inft (ϕt+1(V )) + 1{Vt<0}(−∞), for all V ∈ V
p, t ∈ T, t < T,

and it is semi-weakly rejection time consistent if

ϕt (V ) ≤ 1{Vt≤0}ess supt (ϕt+1(V )) + 1{Vt>0}(+∞), for all V ∈ V
p, t ∈ T, t < T .

Clearly, weak acceptance/rejection time consistency for stochastic processes
implies semi-weak acceptance/rejection time consistency.

Next, we will show that the definition of semi-weak time consistency is indeed
equivalent to the time consistency introduced in (Bielecki et al. 2014b).

Proposition 11 Let ϕ be a dynamic LM-measure on Vp. The following properties
are equivalent

1) ϕ is semi-weakly acceptance time consistent.
2) ϕ is one step μ-acceptance time consistent, where the (generalized) update rule

is given by

μt,t+1(m, V ) = 1{Vt≥0}ess inftm + 1{Vt<0}(−∞).

3) For all V ∈ V
p, t ∈ T, t < T , and mt ∈ L̄0

t , such that Vt ≥ 0

ϕt+1(V ) ≥ mt =⇒ ϕt (V ) ≥ mt .

A similar result is true for semi-weak rejection time consistency.

For the proof, see (Bielecki et al. 2014a, Proposition 4.8).
Property 3) in Proposition 11, which is the definition of the (acceptance) time

consistency given in (Bielecki et al. 2014b), best illustrates the financial meaning of
semi-weak acceptance time consistency: if tomorrow we accept the dividend stream
V ∈ V

p at level mt , and if we get a positive dividend Vt paid today at time t, then
today we accept the cash flow V at least at level mt as well. A similar interpretation
is valid for semi-weak rejection time consistency.

The next two results are important. In particular, they generalize the work done
in (Bielecki et al. 2014b) regarding duality between cash-additive risk measures and
acceptability indices.

13In (Bielecki et al. 2014b), the authors combine both semi-weak acceptance and rejection time
consistency into one single definition and call it time consistency.
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Proposition 12 Let {ϕx }x∈R+ be a decreasing family14 of dynamic LM-measures
on V

p. Assume that for each x ∈ R+, ϕx is weakly acceptance (resp. weakly
rejection) time consistent. Then, the family {αt }t∈T of maps αt : V

p → L̄0
t

defined by
αt (V ) := ess sup

x∈R+
{x1{ϕx

t (V )≥0}}, (28)

is a semi-weakly acceptance (resp. semi-weakly rejection) time consistent dynamic
LM-measure.

For the proof, see (Bielecki et al. 2014a, Proposition 4.9). It will be useful to note
that αt (V ) defined in (28) can also be written as

αt (V ) = sup{x ∈ R
+ | ϕx

t (V ) ≥ 0}. (29)

Proposition 13 Let {αt }t∈T be a dynamic LM-measure, which is independent of
the past and translation invariant.15 Assume that {αt }t∈T is semi-weakly acceptance
(resp. semi-weakly rejection) time consistent. Then, for any x ∈ R+, the family ϕx =
{ϕx

t }t∈T of maps ϕx
t : Vp → L̄0

t defined by

ϕx
t (V ) := ess inf

c∈R
{c1{αt (V−c1{t})≤x}}, (30)

is a weakly acceptance (resp. weakly rejection) time consistent dynamic LM-measure.

For the proof, see (Bielecki et al. 2014a, Proposition 4.10). In what follows, we
will use the fact that ϕx

t (V ) defined in (30) can also be written as

ϕx
t (V ) = inf{c ∈ R | αt (V − c1{t}) ≤ x}. (31)

This type of dual representation, i.e., (28) and (30), or, equivalently, (29) and (31),
first appeared in (Cherny and Madan 2009) where the authors studied the static (one
period of time) case. Subsequently, in (Bielecki et al. 2014b), the authors extended
these results to the case of stochastic processes with special emphasis on the time con-
sistency property. In contrast to the results of (Bielecki et al. 2014b), Propositions 12
and 13 consider an arbitrary probability space, not just a finite one.

Strong time consistency

Let us start with the definition of strong time consistency.

Definition 14 Let ϕ be a dynamic LM-measure on V
p. Then ϕ is said to be

strongly time consistent if

Vt = V ′
t and ϕt+1(V ) = ϕt+1(V

′) =⇒ ϕt (V ) = ϕt (V
′),

for any V, V ′ ∈ V
p and t ∈ T, such that t < T .

14A family, indexed by x ∈ R+, of maps {ϕx
t }t∈T, is called decreasing, if ϕx

t (X) ≤ ϕ
y
t (X) for all X ∈ X ,

t ∈ T and x, y ∈ R+, such that x ≥ y.
15See Appendix “Dynamic LM-measures” for details.
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Now, let us present the counterpart of Proposition 4.

Proposition 14 Let ϕ be a dynamic LM-measure on V
p, which is independent of

the past. The following properties are equivalent:

1) ϕ is strongly time consistent.
2) There exists an update ruleμ such that: for any t ∈ T

′, m ∈ L̄0
t , and V, V ′ ∈ V

p,
satisfying Vt = V ′

t , we have μt,t+1(m, V ) = μt,t+1(m, V ′); the family ϕ is both
one-step μ-acceptance and one-step μ-rejection time consistent.

3) There exists an update rule μ such that for any t < T and V ∈ V
p

ϕt (V ) = μt,t+1(ϕt+1(V ), 1{t}Vt ).

As in the case of random variables, strong time consistency is usually considered
for dynamic monetary risk measures on V

∞. In this case, additional equivalent prop-
erties can be established. For brevity, we skip the details, and only show the general
idea for deriving a litany of equivalent properties. This idea is rooted in a specific
construction of strongly time consistent dynamic LM-measures.

Corollary 1 Let μ be a update rule for random variables. Let ϕ̃ be a dynamic
LM-measure on V∞ given by

{
ϕ̃T (V ) = VT
ϕ̃t (V ) = μt,t+1(ϕ̃t+1(V )) + Vt ,

Then, ϕ̃ is a strongly time consistent dynamic LM-measure on V∞.

For a more detailed explanation of this idea and other equivalent properties see,
e.g., (Cheridito and Kupper 2011) or (Ruszczyński and Shapiro 2006b).

Other types of time consistency

Other types of time consistency for stochastic processes may be defined in analogy
to what is done in Section “Other types of time consistency” for the case of random
variables. For brevity, we limit our discussion here to the update rules derived from
dynamic LM-measures.

First, given a dynamic LM-measure ϕ on V
p, we denote by ϕ̃ the family of maps

ϕ̃t : L p
t+1 → L̄0

t given by

ϕ̃t (X) := ϕt (1{t+1}X), for t ∈ T
′. (32)

Since ϕ is monotone and local on V
p, then, clearly, ϕ̃t is local and monotone on L p

t+1.
Next, for any t ∈ T

′, we extend ϕ̃t to L̄0
t+1, preserving locality and monotonicity

(see Remark 12), and this extension produces a one-step update rule.
For example, the middle acceptance time consistency is obtained by taking the

update rule μ given as

μt,t+1(m, V ) = ϕ̃−
t (m + Vt ), t ∈ T

′,
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where ϕ̃−
t : L̄0

t+1 → L̄0
t is defined as in (55), with the sets Y−

A (X) replaced by

Y−
t,A(X) := {Y ∈ L p

t+1 | 1AY ≤ 1AX}, X ∈ L̄0
t+1.

Taxonomy of results

In Fig. 2, we summarize the results surveyed in Section “Time consistency for
stochastic processes”. We label each arrow (implication or equivalence) in the
flowchart with numbers in squares and we relate the labels to the relevant results.
Additionally, we provide comments on converse implications whenever appropriate.

�1 Proposition 9, 5)
�2 Proposition 9, 4)
�3 Proposition 11, 3)
�4 Proposition 10
�5 Proposition 10, and see also �4.
�6 Proposition 14.

Remark 10 The converse of implications�4 and �5 in Flowchart 2 do not hold true
in general; one can use the same counterexamples as in the case of random variables.
For a counterexample showing that the converse of �3 does not hold true in general,
see Example 5.

Fig. 2 Summary of results for acceptance time consistency for stochastic processes
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Examples

In this section, we present examples that illustrate the different types of time consis-
tency for dynamic risk measures and dynamic performance measures, as well as the
relationships between them.

We recall that according to the convention adopted in this paper, the dynamic LM-
measures representing risk measures are the negatives of their classical counterparts.
With this understanding, in the titles of the examples representing risk measures
below we will skip the term “negative”.

Example 3 (Value at Risk (V@R)) Let X = L0 and α ∈ (0, 1). We denote by
ϕα
t (X) an Ft -conditional α-quantile of X

ϕα
t (X) := ess sup{Y ∈ L0

t | P[X ≤ Y | Ft ] ≤ α}. (33)

According to our convention, the conditional V@R is defined by V@Rα
t (X) :=

−ϕα
t (X).
The family of maps {ϕα

t }t∈T is a dynamic monetary utility measure. It is well
known that {ϕα

t }t∈T is not strongly time consistent; see (Cheridito and Stadje 2009)
for details. However, it is both weakly acceptance and weakly rejection time consis-
tent. Indeed, if ϕα

s (X) ≥ 0, for some s > t , and X ∈ L0, then for any ε < 0 we get
P[X ≤ ε | Fs] = E[1{X≤ε}|Fs] ≤ α, and

E[1{X≤ε}|Ft ] = E[E[1{X≤ε}|Fs] |Ft ] ≤ α.

Since ε < 0 was chosen arbitrarily, we get ϕα
t (X) ≥ 0, and thus, in view of

Proposition 2, {ϕα
t }t∈T is weakly acceptance time consistent.

Now, let us assume that ϕα
s (X) ≤ 0. Then, due to the locality of the condi-

tional expectation, we have that E[1{X≤ε}|Fs] > α, for any ε > 0. In fact, if
P[E[1{X≤ε}|Fs] > α] < 1, then there exists an Fs -measurable set A with positive
measure on which

E[1{X≤ε}|Fs] ≤ α.

Taking any Y ′ ∈ L0
s such that E[1{X≤Y ′}|Fs] ≤ α, we know that for Fs -measurable

random variable Z := 1Aε + 1AcY ′ we get
E[1{X≤Z}|Fs] = 1AE[1{X≤Z}|Fs] + 1Ac E[1{X≤Z}|Fs] = 1AE[1{X≤ε}|Fs]

+ 1Ac E[1{X≤Y ′}|Fs] ≤ α.

Thus,
0 ≥ ess sup{Y ∈ L0

s | P[X ≤ Y | Fs] ≤ α} ≥ Z ,

which leads to the contradiction.
Consequently, for any Y ∈ L0

t and ε > 0, we get

E[1{X≤Y }|Ft ] ≥ E[1{X≤ε<Y }|Ft ] = E[1{X≤ε}1{Y>ε}|Ft ]
= 1{Y>ε}E[E[1{X≤ε}|Fs]|Ft ],

and, consequently, E[1{X≤Y }|Ft ] > α on Ft -measurable set {Y > ε}. Hence,
ϕα
t (X) = ess sup{Y ∈ L0

t | E[1{X≤Y }|Ft ] ≤ α} ≤ ess sup{Y ∈ L0
t | Y ≤ ε} = ε.
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Since ε > 0 was chosen arbitrary, we conclude that ϕα
t (X) ≤ 0, thus {ϕα

t }t∈T is
weakly rejection time consistent.

Example 4 (Conditional Weighted Value at Risk) Let X = L0. For a fixed α ∈
(0, 1), we consider the family of sets {Dα

t }t∈T defined by

Dα
t := {Z ∈ L1 : 0 ≤ Z ≤ α−1, E[Z |Ft ] = 1}, (34)

and we set
ϕα
t (X) := ess inf

Z∈Dα
t

E[Z X |Ft ], t ∈ T, X ∈ L0. (35)

The family of maps {ϕα
t }t∈T is a dynamic coherent utility measure (see, e.g.,

(Cherny 2006) for details). Moreover, it is submartingale time consistent. Indeed, let
t, s ∈ T, s > t . Clearly, Dα

s ⊆ Dα
t , thus

ϕα
t (X) = ess infZ∈Dα

t
E[Z X |Ft ] ≤ ess infZ∈Dα

s
E[Z X |Ft ]

= ess infZ∈Dα
s
E[E[Z X |Fs]|Ft ].

(36)

Now, using the fact that Dα
s is L1-closed (see (Cherny 2006) for details), for any

X ∈ L0, there exist Z∗
X ∈ Dα

s such that ϕα
s (X) = E[Z∗

X X |Fs]. This implies that
ess infZ∈Dα

s
E[E[Z X |Fs]|Ft ] ≤ E[E[Z∗

X X |Fs]|Ft ]=E[ess infZ∈Dα
s
E[Z X |Fs]|Ft ]

= E[ϕα
s (X)|Ft ].

(37)
Combining (36) and (37), we conclude that ϕα is submartingale time-consistent. In
particular, by Remark 8, ϕα is also weakly rejection time consistent.

On the other hand, as shown in (Artzner et al. 2007), ϕα is neither middle rejection
time consistent nor weakly acceptance time consistent.

Example 5 (Dynamic TV@R Acceptability Index for Processes) Tail Value at
Risk Acceptability Index was introduced in (Cherny and Madan 2009), as an example
of static scale invariant performance measure for the case of random variables. Here,
along the lines of (Bielecki et al. (Bielecki et al. 2014b)), we extend this notion to
the dynamic setup and apply it to the case of stochastic processes. Let X = V

0, and
for a fixed α ∈ (0, 1], we consider the sets {Dα

t }t∈T defined in (34). We consider the
distortion function g(x) = 1

1+x , x ∈ R
+, and we define ρx = {ρx

t }t∈T, x ∈ R+, as
follows

ρx
t (V ) = ess in f

Z∈Dg(x)
t

E

[
Z

T∑
i=t

Vi
∣∣∣Ft

]
, V ∈ X, t ∈ T . (38)

Then, ρx is an increasing (with respect to x) family of dynamic coherent utility
measures for processes, and the map α = {αt }t∈T given by

αt (V ) = sup{x ∈ R+ | ρx
t (V ) ≤ 0}, (39)

is a dynamic acceptability index for processes (see (Cherny and Madan 2009) and
(Bielecki et al. (Bielecki et al. 2014b))). Moreover,

ρx
t (V ) = inf{c ∈ R | αt (V + c1{t}) ≥ x}. (40)
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Clearly, (39) and (40) are the counterparts of (29) and (31), respectively.
Considering the above, then, similarly to Example 4, one can show that ρx is

weakly rejection time consistent, but it is not weakly acceptance time consistent, for
any fixed x ∈ R+, and hence, by Proposition 12 and Proposition 13, α is semi-weakly
rejection time consistent but not semi-weakly acceptance time consistent.

Example 6 (Dynamic RAROC) The Risk Adjusted Return On Capital (RAROC) is
a popular scale invariant measure of performance; see (Cherny and Madan (Cherny
and Madan 2009)) for static RAROC and (Bielecki et al. (Bielecki et al. 2014b)) for
its extension to the dynamic setup. We consider the space X = V

1, and for a fixed
α ∈ (0, 1) the dynamic RAROC is defined as follows

ϕt (V ) :=
{

E[∑T
i=t Vi |Ft ]

−ρα
t (V )

if E
[∑T

i=t Vi |Ft

]
> 0,

0 otherwise,
(41)

when ρα
t (V ) < 0, where ρα

t (V ) = ess inf
Z∈Dα

t

E[Z∑T
i=t Vi |Ft ], and {Dα

t }t∈T given in

(34), and ϕt (V ) = +∞, if ρt (V ) ≥ 0. It was shown in (Bielecki et al. 2014b) that
ϕ is a dynamic acceptability index for processes. Moreover, for any fixed t ∈ T, we
have that (cf. (Bielecki et al. 2015a))

ϕt (V ) = sup{x ∈ R+ : φx
t (V ) ≥ 0},

where φx
t (V ) = ess inf

Z∈Bx
t

E[Z(
∑T

i=t Vi )|Ft ], with Bx
t = {Z ∈ L1 : Z = 1

1+x +
x

1+x Z1, for some Z1 ∈ Dα
t }. It is easy to check that the family {ϕx

t }t∈T is a dynamic
coherent utility measure for processes, and by similar arguments as in Example 4, we
get that for any fixed x ∈ R+, ϕx

t is weakly rejection time consistent, but not weakly
acceptance time consistent. Since 1 ∈ Dα

t , it follows that {φx
t }t∈T is increasing in x ∈

R+, and by similar arguments as in Example 5, we conclude that ϕ is semi-weakly
rejection time consistent, but not semi-weakly acceptance time consistent.

Example 7 (Dynamic Gain Loss Ratio) Dynamic Gain Loss Ratio (dGLR) is
another popular measure of performance, which essentially improves on some draw-
backs of Sharpe Ratio (such as penalizing for positive returns), and it is given by the
ratio of expected return over expected losses. Formally, for X = V

1, dGLR is defined
as

ϕt (V ) :=

⎧⎪⎨
⎪⎩

E
[∑T

i=t Vi |Ft

]

E
[
(
∑T

i=t Vi )
−|Ft

] , if E
[∑T

i=t Vi |Ft

]
> 0,

0, otherwise.

(42)

For various properties and dual representations of dGLR see (Bielecki
et al. 2014b, 2016). In (Bielecki et al. (Bielecki et al. 2014b)), assuming that �

is finite, the authors showed that dGLR is both semi-weakly acceptance and semi-
weakly rejection time consistent. For the sake of completeness, we will show here that
dGLR is semi-weakly acceptance time consistent.

Assume that t ∈ T
′, and V ∈ X . In view of Definition 13, it is enough to show that

ϕt (V ) ≥ 1{Vt≥0}ess inft (ϕt+1(V )) + 1{Vt<0}(−∞). (43)
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On the set {Vt < 0}, the inequality (43) is trivial. Since ϕt is non-negative and
local, without loss of generality, we may assume that ess inft (ϕt+1(V )) > 0. Since,
ϕt+1(V ) ≥ ess inft (ϕt+1(V )), we have that

E

⎡
⎣

T∑
i=t+1

Vi
∣∣∣Ft+1

⎤
⎦ ≥ ess inft (ϕt+1(V )) · E

⎡
⎣
⎛
⎝

T∑
i=t+1

Vi

⎞
⎠

− ∣∣∣Ft+1

⎤
⎦ . (44)

Using (44) we obtain

1{Vt≥0}E
[

T∑
i=t

Vi
∣∣∣Ft

]
≥ 1{Vt≥0}E

⎡
⎣E

⎡
⎣

T∑
i=t+1

Vi |Ft+1

⎤
⎦
∣∣∣Ft

⎤
⎦

≥1{Vt≥0}ess inft (ϕt+1(V ))·E
⎡
⎣1{Vt≥0}E

⎡
⎣
⎛
⎝

T∑
i=t+1

Vi

⎞
⎠

− ∣∣∣Ft+1

⎤
⎦
∣∣∣Ft

⎤
⎦

≥ 1{Vt≥0}ess inft (ϕt+1(V )) · E
⎡
⎣
(

T∑
i=t

Vi

)− ∣∣∣Ft

⎤
⎦ . (45)

Note that ess inft (ϕt+1(V )) > 0 implies that ϕt+1(V ) > 0, thus E
[∑T

i=t+1

Vi |Ft+1
]

> 0. Hence, on the set {Vt ≥ 0}, we have

E

[
T∑
i=t

Vi
∣∣∣Ft

]
≥ E

⎡
⎣E

⎡
⎣

T∑
i=t+1

Vi
∣∣∣Ft+1

⎤
⎦
∣∣∣Ft

⎤
⎦ > 0.

We conclude the proof by combining the last inequality with (45).

Example 8 (Dynamic Entropic Risk Measure) Entropic Risk Measure is a classi-
cal convex risk measure. The dynamic version of it (up to the negative sign) is defined
as follows

ϕ
γ
t (X) =

{ 1
γ

ln E[exp(γ X)|Ft ] if γ �= 0,

E[X |Ft ] if γ = 0,
(46)

where X ∈ X = L∞, t ∈ T. The parameter θ = −γ is commonly known as the
risk-aversion parameter. It can be proved that for γ ≤ 0, the map ϕ

γ
t is a dynamic

concave utility measure, and that for any γ ∈ R, the map ϕγ is strongly time con-
sistent (cf. (Kupper and Schachermayer 2009)). Since it is also cash-additive, strong
time consistency implies both weak rejection and weak acceptance time consistency.
Moreover (see (Bielecki et al. 2015a; Kupper and Schachermayer 2009) for details),
{ϕγ

t }t∈T is supermartingale time consistent if and only if γ ≥ 0, and submartingale
time consistent if and only if γ ≤ 0.

Example 9 (Dynamic Entropic Risk Measure with non-constant risk aversion)
One can generalize the Dynamic Entropic Risk Measure (46) by taking time
dependent risk aversion parameters. Let
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ϕ
γt
t (X) =

{ 1
γt

ln E[exp(γt X)|Ft ] if γt �= 0,

E[X |Ft ] if γt = 0,
(47)

where {γt }t∈T is such that γt ∈ L∞
t , t ∈ T. It has been shown in (Acciaio and Penner

2011) that {ϕγt
t }t∈T is strongly time consistent if and only if {γt }t∈T is a constant

process, and that it is middle acceptance time consistent if and only if {γt }t∈T is a
non-increasing process, and that it is middle rejection time consistent if and only if
{γt }t∈T is non-decreasing.

Example 10 (Dynamic Certainty Equivalent) Dynamic Certainty Equivalents
form a large class of dynamic risk measures, with Dynamic Entropic Risk Mea-
sure being a particular case. In this example, following Kupper and Schachermayer
(2009), we consider an infinite time horizon, and take T = N and X = L∞. We
let U : R̄ → R̄ be a strictly increasing and continuous function on R̄, i.e., strictly
increasing and continuous on R, with U (±∞) = limn→±∞ U (n). Let ϕ = {ϕt }t∈T
be defined by

ϕt (X) = U−1(E[U (X)|Ft ]), X ∈ X , t ∈ T. (48)

It is easy to check that ϕ is a strongly time consistent dynamic LM-measure.
It belongs to the class of so called dynamic certainty equivalents Kupper and
Schachermayer (2009). In Kupper and Schachermayer (2009), the authors showed
that every dynamic LM-measure, which is finite, normalized, strictly monotone, con-
tinuous, law invariant, admits The Fatou property, and is strongly time consistent, can
be represented as (48) for some U. We also refer to Biagini and Bion-Nadal (2014)
for a more general approach to dynamic certainty equivalents (e.g., by using stochas-
tic utility functions U), and to Bielecki et al. (2016) for the definition of certainty
equivalents for processes.

Example 11 (Dynamic Risk Sensitive Criterion) In Bielecki et al. (2015a) the
authors introduced the notion of the Dynamic Limit Growth Index (dLGI) that is
designed to measure the long-term performance of a financial portfolio in discrete
time. The dynamic analog of Risk Sensitive Criterion (cf. (Bielecki and Pliska 2003;
Davis and Lleo 2014; Whittle 1990) and references therein) is a particular case of
dLGI. We consider an infinite time horizon setup, T = N, and the following space
suitable for our needs Vp

ln := {(Wt )t∈T : Wt > 0, ln Wt ∈ L p
t }. To be consistent with

Bielecki et al. (2015a), we view the elements of X as cumulative value processes of
portfolios of some financial securities, which have integrable growth expressed as
cumulative log-return (note that everywhere else in the present paper, the stochastic
processes represent dividend streams). Let ϕγ = {ϕγ

t }t∈T be defined by

ϕ
γ
t (W ) =

{
lim infT→∞ 1

T
1
γ

ln E[W γ

T |Ft ], if γ �= 0,

lim infT→∞ 1
T E[ln WT |Ft ], if γ = 0,

(49)

where γ is a fixed real number. It was proved in Bielecki et al. (2015a) that ϕγ is a
dynamic measure of performance, and it is μ-acceptance time consistent with respect
to μt (m) = E[m|Ft ], t ∈ T, if and only if γ > 0, and μ-rejection time consistent,
with respect to μ if and only if γ < 0.
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Taxonomy of examples

The following table is meant to help the reader to navigate through the examples
presented above relative to various types of time consistency studied in this paper.
We will use the following abbreviations for time consistency: WA - weak acceptance;
WR - weak rejection; sWA - semi-weak acceptance; sWR - semi-weak rejection; MA
- middle acceptance; MR - middle rejection; STR - strong; Sub - submartinagle; Sup
- supermartinagle.

If a cell is marked with the check mark, that means that the corresponding property
of time consistency is satisfied; otherwise the property is not satisfied in general.

We note that Example 11 is not represented in the table due to the distinct nature
of the example. The dGLI evaluates a process V, but it does it through a limiting
procedure, which really amounts to evaluating the process through its “values at T =
∞.” We refer the reader to (Bielecki et al. 2015a) for a detailed discussion on various
properties of this measure.

X WA WR sWA sWR MA MR STR Sub Sup

Example 3 L p � � � �
Example 4 L p � � �
Example 5 V

p �
Example 6 V

p �
Example 7 V

p � �

Example 8
γ ≥ 0

L p � � � � � � � �
γ ≤ 0 � � � � � � � �

Example 9
γt ↓

L p � � � �∗

γt ↑ � � � �∗∗

Example 10 L p � � � � � � �

*if γt ≥ 0
**if γt ≤ 0

Appendix

Here we provide a brief exposition of the three fundamental concepts used in the
paper: the dynamic LM-measures, the conditional essential suprema/infima, and the
LM-extensions.

Dynamic LM-measures

Let X denote the space of random variables or adapted stochastic processes as
described in Section “Mathematical preliminaries”.

We start with listing additional properties that may be enjoyed by a dynamic LM-
measure. Let ϕ be a dynamic LM-measure. We say that ϕ is
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• Super-additive if ϕt (X + Y ) ≥ ϕt (X) + ϕt (Y );
• Normalized if ϕt (0) = 0;
• Cash-additive if ϕ(X + m1{t}) = ϕt (X) + m;
• Quasi-concave if ϕt (λ ·t X + (1 − λ) ·t Y ) ≥ ϕt (X) ∧ ϕt (Y );
• Concave if ϕt (λ ·t X + (1 − λ) ·t Y ) ≥ λϕt (X) + (1 − λ)ϕt (Y );
• Scale invariant if ϕt (β ·t X) = ϕt (X);
• Positively homogeneous if ϕt (β ·t X) = βϕt (X);
• Lower semi-continuous with respect to the topology η, if {Z ∈ L̄0

t | ϕt (X) ≤ Z}
is η-closed;16

• Upper semi-continuous with respect to the topology η, if {Z ∈ L̄0
t | ϕt (X) ≥ Z}

is η-closed,

for any X, Y ∈ X , t, s ∈ T, such that s > t , and m, λ, β ∈ L p
t , such that 0 ≤ λ ≤ 1,

β > 0 and ‖β‖∞ < ∞. Moreover, if X = V
p, then we say that ϕ is

• Independent of the past if ϕt (X) = ϕt (X − 0 ·t X);
• Translation invariant if ϕt (X + m1{t}) = ϕt (X + m1{s}).

These last two properties are automatically satisfied for X = L p.
Most of the above properties have a natural financial interpretation. For example,

quasi-concavity, concavity, or super-additivity correspond to the positive effect of
portfolio diversification. See (Cherny and Madan 2009; Föllmer and Schied 2010)
for more details and for a financial interpretation of other properties listed
above.

Next, we recall the Fatou property, the Lebesgue property, as well as the law-
invariance property. For simplicity, we present them only for the case of random
variables. We say that a dynamic LM-measure ϕ admits

• Fatou property, if ϕt (X) ≥ lim supn→∞ ϕt (Xn);
• Lebesgue property , if ϕt (X) = limn→∞ ϕ(Xn);
• Law-invariant property if ϕt (X) = ϕt (Y ), whenever Law(X) = Law(Y );

for any t ∈ T, X, Y ∈ X and any dominated sequence 17 {Xn}n∈N such that Xn ∈ L p

and Xn
a.s.−−→ X .

Classes of dynamic LM-measures

We say that a dynamic LM-measure ϕ is a

• Dynamic monetary utility measure, or just dynamic utility measure for short, if
ϕ is translation invariant, independent of the past, normalized, monotone, and
cash-additive;

• Dynamic concave utility measure, if ϕ is a dynamic utility measure and concave;

16That is closed with respect to topology η; if η will be clear from the context, we will simply write that f
is lower semi-continuous. If X = L p , then we use the topology induced by ‖ · ‖p norm (see (Föllmer and
Schied 2004, Appendix A.7) for details).
17This means that there exist Y ∈ X such that for all n ∈ N we have |Xn | ≤ |Y |.
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• Dynamic coherent utility measure, if ϕ is a dynamic utility measure, is positive
homogeneous, and super-additive;

• Dynamic performance measure, if ϕ is adapted, translation invariant, indepen-
dent of the past, monotone increasing, and scale invariant;• Dynamic acceptability index, if ϕ is a dynamic performance measure, and it is
quasi-concave.

It needs to be stressed that in the literature, typically, the negative of the dynamic
(monetary, concave, or coherent) utility measure is used and referred to as dynamic
(monetary, convex, or coherent) risk measure.

Robust representations for dynamic monetary utility measures

Robust representations have been studied for general dynamic LM-measures, not
only for dynamic monetary utility measures. However, in this paper we only use
robust representations for dynamic monetary utility measures for random variables,
and that is why our discussion here is limited to this case. Consequently, we take
X = L p for a fixed p ∈ {0, 1, ∞}.

Let ϕ be a dynamic monetary utility measure. We associate with ϕ the following
families of objects:

• acceptance and rejection sets denoted by A = {At }t∈T and R = {Rt }t∈T,
respectively, where

At := {X ∈ L p : ϕt (X) ≥ 0},
Rt := {X ∈ L p : ϕt (X) ≤ 0}.

• conditional acceptance and conditional rejection sets denoted by {At,s : t, s ∈
T, s > t} and {Rt,s : t, s ∈ T, s > t}, respectively, where

At,s := {X ∈ L p ∩ L̄0
s : ϕt (X) ≥ 0},

Rt,s := {X ∈ L p ∩ L̄0
s : ϕt (X) ≤ 0}.

• minimal penalty functions denoted by αmin = {αmin
t }t∈T, where αmin

t : M(P) →
R̄ is given by

αmin
t (Q) := −ess inf

X∈At

EQ[X |Ft ].

• conditional minimal penalty functions denoted by {αmin
t,s : t, s ∈ T, s > t},

where αmin
t,s : M(P) → L̄0

t is given by

αmin
t,s (Q) := −ess inf

X∈At,s

EQ[X |Ft ].

The following important definition is frequently used in this paper.

Definition 15 Let ϕ be a dynamic monetary utility measure. We call ϕ repre-
sentable, if

ϕt (X) = ess inf
Q∈M(P)

(
EQ[X | Ft ] + αmin

t (Q)
)
, (50)

for any X ∈ X .
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This type of representation is called robust or numerical representations. More-
over, such representation characterizes dynamic concave utility measures that admit
the Fatou property.

Conditional expectation and conditional essential supremum/infimum

We present here some relevant properties of the generalized conditional expectation
and conditional essential superemum and infimum, in the context of L̄0.

Proposition 15 For any X, Y ∈ L̄0 and s, t ∈ T, s > t , it holds that

1) E[λX |Ft ] ≤ λE[X |Ft ] for λ ∈ L0
t , and E[λX |Ft ] = λE[X |Ft ] for λ ∈ L0

t ,
λ ≥ 0;

2) E[X |Ft ] ≤ E[E[X |Fs]|Ft ], and E[X |Ft ] = E[E[X |Fs]|Ft ] for X ≥ 0;
3) E[X |Ft ]+ E[Y |Ft ] ≤ E[X +Y |Ft ], and E[X |Ft ]+ E[Y |Ft ] = E[X +Y |Ft ],

if X, Y ≥ 0.

For the proof, see (Bielecki et al. 2014a, Proposition A.1).

Remark 11 All inequalities in Proposition 15 can be strict. Assume that t = 0
and k, s ∈ T, k > s > 0, and let ξ ∈ L0

k be such that ξ = ±1, ξ is independent of
Fs , and P(ξ = 1) = P(ξ = −1) = 1/2. We consider Z ∈ L0

s such that Z ≥ 0, and
E[Z ] = ∞. By taking λ = −1, X = ξ Z and Y = −X, we get strict inequalities in
1), 2), and 3).

We proceed with presenting a definition of the conditional essential infimum and
supremum that is equivalent to the one presented in Section “Mathematical prelim-
inaries”, cf. (51). We start by recalling the definition of the conditional essential infi-
mum for bounded random variables. For X ∈ L∞ and t ∈ T, we denote by ess inftX
the unique (up to a set of measure zero), the Ft -measurable random variable, such
that for any A ∈ Ft , the following equality holds true

ess inf
ω∈A

X = ess inf
ω∈A

(ess inft X). (51)

We call this random variable the Ft -conditional essential infimum of X. Accord-
ingly, we define ess supt (X) := −ess inft (−X), the Ft -conditional essential supre-
mum of X ∈ L∞. The reader is referred to (Barron et al. 2003) for a proof of the
existence and uniqueness of the conditional essential supremum/infimum.

Consequently, for any t ∈ T and X ∈ L̄0, we define the Ft -conditional essential
infimum by

ess inft X := lim
n→∞

[
ess inft (X

+ ∧ n)
]

− lim
n→∞

[
ess supt (X

− ∧ n)
]
. (52)

Respectively, we put ess supt (X) := −ess inft (−X).

Proposition 16 For any X, Y ∈ L̄0, s, t ∈ T, s ≥ t , and A ∈ Ft the following
properties hold,
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1) ess infω∈AX = ess infω∈A(ess inft X);
2) If ess infω∈AX = ess infω∈AU for some U ∈ L̄0

t , then U = ess inft X;
3) X ≥ ess inft X;
4) If Z ∈ L̄0

t , is such that X ≥ Z, then ess inft X ≥ Z;
5) If X ≥ Y , then ess inft X ≥ ess inft Y ;
6) 1Aess inft X = 1Aess inft (1AX);
7) ess infs X ≥ ess inft X;

Analogous results are true for {ess supt }t∈T.

The proof for the case X, Y ∈ L∞ can be found in (Barron et al. 2003). Since for
any n ∈ N and X, Y ∈ L̄0, we get X+ ∧ n ∈ L∞, X− ∧ n ∈ L∞, and X+ ∧ X− = 0,
the extension of the proof to the case X, Y ∈ L̄0 is straightforward.

It is worth mentioning that properties 3) and 4) from Proposition 16 imply that the
conditional essential infimum ess inft (X) can be defined as the largest Ft -measurable
random variable, which is smaller than X (cf. (Barron et al. 2003)).

Next, we define the generalized versions of ess inf and ess sup of a (possibly
uncountable) family of random variables. For {Xi }i∈I , where Xi ∈ L̄0, we let

ess inf
i∈I Xi := lim

n→∞
[
ess infi∈I (X+

i ∧ n)
]− lim

n→∞
[
ess supi∈I (X−

i ∧ n)
]
. (53)

Note that, in view of (Karatzas and Shreve 1998, Appendix A), ess infi∈I Xi ∧ n
and ess supi∈I Xi ∧n are well defined, so that ess infi∈I Xi is well defined. It needs to
be observed that the operations of the right-hand side of (53) preserve measurability.
In particular, if Xi ∈ Ft for all i ∈ I , then ess infi∈I Xi ∈ Ft .

Furthermore, if for any i, j ∈ I , there exists k ∈ I , such that Xk ≤ Xi ∧ X j ,
then there exists a sequence in ∈ I, n ∈ N, such that {Xin }n∈N is non-increasing
and ess infi∈I Xi = infn∈N Xin = limn→∞ Xin . Analogous results hold true for
ess supi∈I Xi .

LM-extensions

In this part of the appendix, we introduce the concept of an LM-extension of a
dynamic LM-measure for random variables.

Definition 16 Let ϕ be a dynamic LM-measure on L p. We call a family ϕ̂ =
{ϕ̂t }t∈T of maps ϕ̂t : L̄0 → L̄0

t an LM-extension of ϕ, if for any t ∈ T, ϕ̂t |X ≡ ϕt ,
and ϕ̂t is local and monotone on L̄0.18

We will show below that such extension exists, for which we will make use of the
following auxiliary sets:

Y+
A (X) := {Y ∈ X | 1AY ≥ 1AX}, Y−

A (X) := {Y ∈ X | 1AY ≤ 1AX},
defined for any X ∈ L̄0 and A ∈ F .

18That is, it satisfies monotonicity and locality on L̄0, as in 5) and 6) in Proposition 16.
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Definition 17 Let ϕ be a dynamic LM-measure. The collection of functions ϕ+ =
{ϕ+

t }t∈T, where ϕ+
t : L̄0 → L̄0

t is defined as19

ϕ+
t (X) := ess inf

A∈Ft

[
1A ess inf

Y∈Y+
A (X)

ϕt (Y ) + 1Ac (+∞)
]
, (54)

is called the upper LM-extension of ϕ. Respectively, the collection of functions ϕ− =
{ϕ−

t }t∈T, where ϕ−
t : L̄0 → L̄0

t , and

ϕ−
t (X) := ess sup

A∈Ft

[
1A ess sup

Y∈Y−
A (X)

ϕt (Y ) + 1Ac(−∞)
]
, (55)

is called the lower LM-extension of ϕ.

The next result shows that ϕ± are two “extreme” extensions, and any other
extension is sandwiched between them.

Proposition 17 Let ϕ be a dynamic LM-measure. Then, ϕ− and ϕ+ are LM-
extensions of ϕ. Moreover, let ϕ̂ be an LM-extension of ϕ. Then, for any X ∈ L̄0 and
t ∈ T,

ϕ−
t (X) ≤ ϕ̂t (X) ≤ ϕ+

t (X). (56)

Clearly, in general, the maps (54) and (55) are not equal, and thus the extensions
of an LM-measure are not unique.

Remark 12 Let t ∈ T and B ⊆ L̄0 be such that, for any A ∈ Ft , 1AB ⊆ B, and
1AB + 1AcB ⊆ B. As a generalization of Proposition 17, one can show that for any
Ft -local and monotone mapping20 f : B → L̄0

t , the maps f ± defined analogously
as in (54) and (55) are extensions of f to L̄0, preserving locality and monotonicity.

Remark 13 For a large class of LM-measures, as mentioned earlier, there exists
a “robust representation” type theorem—essentially a representation, via convex
duality, as a function of conditional expectation. We refer the reader to (Bielecki et
al. 2016) and references therein, where the authors present a general robust repre-
sentation for dynamic quasi-concave upper semi-continuous LM-measures. Hence,
an alternative construction of extensions can be obtained through the robust repre-
sentations of LM-measures, by considering conditional expectations defined on the
extended real number line, etc.

19We will use the convention ess sup ∅ = −∞ and ess inf ∅ = ∞.
20That is, Ft -local and monotone on B.
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Proofs

Proof of proposition 4

Proof 1) ⇒ 2). Let t, s ∈ T be such that s > t , and consider the following set

Xϕs = {X ∈ L̄0 | X = ϕs(Y ) for some Y ∈ X },
where X = L p. From 1), for any X, Y ∈ X , such that ϕs(X) = ϕs(Y ), we get
ϕt (X) = ϕt (Y ). Next, we define the map φt,s : Xϕs → L̄0

t as follows: for any
X ′ ∈ Xϕs

φt,s(X
′) = ϕt (X), X ∈ X , (57)

where X ∈ X is such that X ′ = ϕs(X). In view of the definition of Xϕs and strong
time consistency of ϕ, the map φt,s is well-defined.

Since there exists Z ∈ X , such that ϕs(Z) = 0 (see property (10)), using locality
of ϕ, we get that for any X ∈ Xϕs , A ∈ Ft , there exists Y ∈ X , so that

1AX = 1Aϕs(Y ) = 1Aϕs(1AY ) + 1Acϕs(1Ac Z) = ϕs(1AY + 1Ac Z).

Thus, 1AX ∈ Xϕs , for any A ∈ Ft , X ∈ Xϕs . Hence, from 1) and the locality of ϕ,
for any X, Y ∈ Xϕs , A ∈ Ft , we get

(A) X ≥ Y ⇒ φt,s(X) ≥ φt,s(Y );
(B) 1Aφt,s(X) = 1Aφt,s(1AX).

In other words, φt,s is local and monotone on Xϕs ⊆ L̄0
s . By Remark 12), there exists

an extension of φt,s , say φ̂t,s : L̄0
s → L̄0

t , which is local and monotone on L̄0
s . Finally,

we take μt,s : L̄0
s → L̄0

t defined by

μt,s(m) := φ̂t,s(m), m ∈ L̄0
s .

Clearly, the family μ = {μt,s : t, s ∈ T, s > t} is an update rule, and using (57),
we get that ϕ is both μ-acceptance and μ-rejection time consistent.

2) ⇒ 3). Let s, t ∈ T and X, Y ∈ X be such that s > t and ϕs(X) ≥ ϕs(Y ).
From 2),(12), and by the monotonicity of μ, we have ϕt (X) = μt,s(ϕs(X)) ≥
μt,s(ϕs(Y )) = ϕt (Y ).

3) ⇒ 1), 4) ⇔ 2), and 4) ⇒ 5) are obvious.
5) ⇒ 4). Let a family μ̃ = {μ̃t,s : t, s ∈ T, t < s} of maps μ̃t,s : L̄0

s → L̄0
t be

given by {
μ̃t,s(·) := μt,t+1(·) if s = t + 1,

μ̃t,s(·) := μt,t+1 ◦ . . . ◦ μs−1,s(·) if s > t + 1,

where μ is an update rule from 5). It is straightforward to check that μ̃ is an update
rule, and that ϕ is both μ̃-acceptance and μ̃-rejection time consistent, which proves
that 4) holds.

The proof is complete.

Proof of proposition 6

Proof Let us consider {φt }t∈T as given in (19).
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1) The proof of monotonicity and locality is similar to the one for the conditional
essential infimum and supremum, Proposition 16. Finally, for any t ∈ T, Z ∈ Dt ,
and m ∈ L̄0

t , since E[Z |Ft ] = 1, we immediately get

E[Zm|Ft ] = 1{m≥0}mE[Z |Ft ] + 1{m<0}(−m)E[−Z |Ft ] = m, (58)

and thus, φt (m) = m, for any m ∈ L̄0
t . Hence, {φt }t∈T is projective.

2) Let ϕ be a dynamic LM-measure which is φ-rejection time consistent, and
g : R̄ → R̄ be an increasing, concave function. Then, for any X ∈ X , we get

g(ϕt (X)) ≥ g(φt (ϕs(X)) = g(ess inf
Z∈Dt

E[Zϕs(X)|Ft ]) = ess inf
Z∈Dt

g(E[Zϕs(X)|Ft ].
(59)

Recall that any Z ∈ Dt is a Radon-Nikodym derivative of some measure Q with
respect to P, and thus we have E[Z X |Ft ] = EQ[X |Ft ]. Hence, by Jensen’s
inequality, we deduce

ess inf
Z∈Dt

g(E[Zϕt (X)|Ft ]) ≥ ess inf
Z∈Dt

E[Zg(ϕt (X))|Ft ] = φt (g(ϕs(X))). (60)

Combining (59) and (60), φ-acceptance time consistency of {g ◦ ϕt }t∈T follows.

Proof of proposition 8

Proof The first part follows immediately from the definition of LM-extension.
Clearly, projectivity of ϕ̂ implies that ϕt (X) = X , for X ∈ X ∩ L̄0

t . To prove the
opposite implication, it is enough to prove that ϕ+ and ϕ− are projective. Assume
that ϕ is such that ϕt (X) = X , for t ∈ T and X ∈ L p ∩ L̄0

t . Let X ∈ L̄0
t . For any

n ∈ N, we get

1{n≥X≥−n}ϕ+
t = 1{n≥X≥−n}ϕ+

t (1{n≥X≥−n}X) = 1{n≥X≥−n}ϕt (1{n≥X≥−n}X)

= 1{n≥X≥−n}X.

Thus, on set
⋃

n∈N{−n ≤ X ≤ n} = {−∞ < X < ∞}, we have

ϕ+
t (X) = X, for X ∈ L̄0

t . (61)

Next, for any A ∈ Ft , such that A ⊆ {X = ∞}, we get Y+
A (X) = ∅, which

implies 1{X=∞}ϕ+(X) = ∞. Finally, for any n ∈ R, using locality of ϕ+
t and the

fact that n ∈ X ∩ L̄0
t , we get

1{X=−∞}ϕ+
t (X) ≤ 1{X=−∞}ϕ+

t (1{X=−∞}n) = 1{X=−∞}ϕt (n) = 1{X=−∞}n,

which implies 1{X=−∞}ϕ+(X) = −∞. Hence, (61) holds true on entire space. The
proof for ϕ− is analogous.

Proof of proposition 14

Proof Let ϕ be a dynamic LM-measure, which is independent of the past.
1) ⇒ 2). Let t ∈ T

′ and consider the following set

Xϕt+1 = {X ∈ L̄0 | X = ϕt+1(V ) for some V ∈ V
p}.
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From 1), for any V, V ′ ∈ X , such that ϕt+1(V ) = ϕt+1(V ′) and Vt = V ′
t , we get

ϕt (X) = ϕt (Y ). Thus, using the independence of the past of ϕ, there exists a map
φt,t+1 : Xϕt+1 × L p

t → L̄0
t such that

φt,t+1(ϕt+1(X), Yt ) = ϕt (X − 1{t}(Xt − Yt )), X ∈ X .

Next, since there exists Z ∈ X , such that ϕt+1(Z) = 0, using the locality of ϕ, we
get that for any X ∈ Xϕt+1 , A ∈ Ft , there exist Y ∈ X , so that

1AX = 1Aϕt+1(Y ) = 1Aϕt+1(1A ·t+1 Y ) + 1Acϕt+1(1Ac ·t+1 Z)

= ϕt+1(1A ·t+1 Y + 1Ac ·t+1 Z).

Thus, 1AX ∈ Xϕt+1 , for any A ∈ Ft , X ∈ Xϕt+1 . Hence, from 2) and the locality
of ϕ, for any X, X ′ ∈ Xϕt+1 , Yt ∈ L p

t and A ∈ Ft , we get

(A) X ≥ X ′ ⇒ φt,t+1(X, Yt ) ≥ φt,t+1(X ′, Yt );
(B) 1Aφt,t+1(X, Yt ) = 1Aφt,t+1(1AX, Yt ).

In other words, for any fixed Yt ∈ L p
t , φt,t+1(·, Yt ) is local and monotone on

Xϕt+1 ⊆ L̄0
t+1. In view of Remark 12, for any fixed Yt ∈ L p

t there exists an extension
(to L̄0

t+1) of φt,t+1(·, Yt ), say φ̂t,t+1(·, Yt ), which is local and monotone on L̄0
t+1.

Finally, we take μt,t+1 : L̄0
t+1 × X → L̄0

t defined by

μt,t+1(m, X) := φ̂t,t+1(m, Xt ), X ∈ X ,m ∈ L̄0
t+1.

Clearly, the family μt,t+1 is a (one step) update rule. Moreover, we get

μt,t+1(m, X) = μt,t+1(m, X ′),
for m ∈ L̄0

t+1 and X, X ′ ∈ X , such that Xt = X ′
t . Finally, ϕ is both μ-acceptance

and μ-rejection time consistent, as

ϕt (X) = ϕt (X − 1{t}(Xt − Xt )) = φt,t+1(ϕt+1(X), Xt ) = μt,t+1(ϕt+1(X), X).

2) ⇒ 1). Assume that μ is an update rule, fulfilling 2), such that ϕ

is both μ-acceptance and μ-rejection time consistent. Then, we get ϕt (X) =
μt,t+1(ϕt+1(X), Y ), for any t ∈ T

′, X ∈ X , and Y ∈ X , such that Xt = Yt . Let
t ∈ T

′ and X, Y ∈ X be such that Xt = Yt and ϕt+1(X) ≥ ϕt+1(Y ). From the above,
and by monotonicity of μ, we have

ϕt (X) = μt,t+1(ϕt+1(X), X) = μt,t+1(ϕt+1(X), Y ) ≥ μt,t+1(ϕt+1(Y ), Y ) = ϕt (Y ).

The proof of the equivalence between 2) and 3) is straightforward and hence
omitted here.

Proof of Proposition 17

Proof We show the proof for ϕ+ only; the proof for ϕ+ is similar. Consider a fixed
t ∈ T.

(Adaptivity) It is easy to note that for any X ∈ L̄0, and A ∈ Ft , we get
[
1A ess inf

Y∈Y+
A (X)

ϕt (Y ) + 1Ac (∞)
]

∈ L̄0
t . (62)
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Indeed, for any X ∈ L̄0, ess inf of the set of Ft -measurable random variables
{ϕt (Y )}Y∈Y+

A (X) is Ft -measurable (see (Karatzas and Shreve 1998), Appendix A),

which implies (62) for any A ∈ Ft . Thus, ϕ+
t (X) ∈ L̄0

t .
(Monotonicity) If X ≥ X ′ then for any A ∈ Ft we get Y+

A (X) ⊆ Y+
A (X ′), and

consequently, for any A ∈ Ft ,

1A ess inf
Y∈Y+

A (X)

ϕt (Y ) ≥ 1A ess inf
Y∈Y+

A (X ′)
ϕt (Y ),

which implies ϕ+
t (X) ≥ ϕ+

t (X ′).
(Locality) Let B ∈ Ft and X ∈ L̄0. It is enough to consider A ∈ Ft , such that

Y+
A (X) �= ∅, as otherwise we get ϕ+

t (X) ≡ ∞. For any such A ∈ Ft , we get

1A∩B ess inf
Y∈Y+

A (X)

ϕt (Y ) = 1A∩B ess inf
Y∈Y+

A∩B (X)

ϕt (Y ). (63)

Indeed, let us assume that Y+
A (X) �= ∅. As Y+

A (X) ⊆ Y+
A∩B(X), we have

1A∩B ess inf
Y∈Y+

A (X)

ϕt (Y ) ≥ 1A∩B ess inf
Y∈Y+

A∩B (X)

ϕt (Y ).

On the other hand, for any Y ∈ Y+
A∩B(X), and any fixed Z ∈ Y+

A (X) (note that
Y+
A (X) �= ∅), we get

1BY + 1Bc Z ∈ Y+
A (X).

Thus, using the locality of ϕt , we deduce

1A∩B ess inf
Y∈Y+

A∩B (X)

ϕt (Y )=1A∩B ess inf
Y∈Y+

A∩B (X)

1Bϕt (1BY+1Bc Z)≥1A∩B ess inf
Y∈Y+

A (X)

ϕt (Y ),

which proves (63). It is easy to see that Y+
A∩B(X) = Y+

A∩B(1B X), and thus

1A ess inf
Y∈Y+

A∩B (X)

ϕt (Y ) = 1A ess inf
Y∈Y+

A∩B (1B X)

ϕt (Y ). (64)

Combining (63), (64), and the fact that Y+
A (X) �= ∅ implies Y+

A (1B X) �= ∅, we
continue

1Bϕ+
t (X) = 1Bess inf

A∈Ft

[
1A ess inf

Y∈Y+
A (X)

ϕt (Y ) + 1Ac(∞)
]

= 1Bess inf
A∈Ft

[
1A∩B ess inf

Y∈Y+
A (X)

ϕt (Y ) + 1Ac∩B(∞)
]

= 1Bess inf
A∈Ft

[
1A∩B ess inf

Y∈Y+
A∩B (X)

ϕt (Y ) + 1Ac∩B(∞)
]

= 1Bess inf
A∈Ft

[
1A∩B ess inf

Y∈Y+
A∩B (1B X)

ϕt (Y ) + 1Ac∩B(∞)
]

= 1Bess inf
A∈Ft

[
1A ess inf

Y∈Y+
A (1B X)

ϕt (Y ) + 1Ac(∞)
]

= 1Bϕ+
t (1B X).

(Extension) If X ∈ X , then for any A ∈ Ft , we get X ∈ Y+
A (X). Thus,

ϕ+
t (X)=ess inf

A∈Ft

[
1A ess inf

Y∈Y+
A (X)

ϕt (Y )+1Ac (∞)
]
=ess inf

A∈Ft

[
1Aϕt (X)+1Ac (∞)

]
=ϕt (X).
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As the above results are true for any t ∈ T, thus we have proved that ϕ+ is an
extension of ϕ. Let us now show (56) for ϕ+.

Let ϕ̂ be an extension of ϕ, and let X ∈ L̄0 and t ∈ T. Due to monotonicity and
locality of ϕ̂t , for any A ∈ Ft and Y ∈ Y+

A (X), we get 1Aϕ̂t (X) ≤ 1Aϕ̂t (Y ). Thus,
recalling that ess inf ∅ = ∞, we have

ϕ̂t (X) ≤ 1A ess inf
Y∈Y+

A (X)

ϕ̂t (Y ) + 1Ac (∞) = 1A ess inf
Y∈Y+

A (X)

ϕt (Y ) + 1Ac (∞). (65)

Since (65) holds true for any A ∈ Ft , we conclude that

ϕ̂t (X) ≤ ess inf
A∈Ft

[
1A ess inf

Y∈Y+
A (X)

ϕt (Y ) + 1Ac(∞)
]

= ϕ+
t (X).

The proof of the second inequality is analogous.
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