1,971 research outputs found

    The “maternal effect” on epilepsy risk: Analysis of familial epilepsies and reassessment of prior evidence

    Get PDF
    Objective: Previous studies have observed that epilepsy risk is higher among offspring of affected women thanoffspring of affected men. We tested whether this “maternal effect” was present in familial epilepsies, which areenriched for genetic factors that contribute to epilepsy risk.Methods: We assessed evidence of a maternal effect in a cohort of families containing ≄3 persons with epilepsyusing three methods: (1) “downward-looking” analysis, comparing the rate of epilepsy in offspring of affectedwomen versus men; (2) “upward-looking” analysis, comparing the rate of the epilepsy among mothers versusfathers of affected individuals; (3) lineage analysis, comparing the the proportion of affected individuals withfamily history of epilepsy on the maternal versus paternal side.Results: Downward-looking analysis revealed no difference in epilepsy rates among offspring of affectedmothers versus fathers (prevalence ratio 1.0, 95% CI 0.8, 1.2). Upward-looking analysis revealed more affectedmothers than affected fathers; this effect was similar for affected and unaffected sibships (odds ratio 0.8, 95%CI 0.5, 1.2) and was explained by a combination of differential fertility and participation rates. Lineage analysisrevealed no significant difference in the likelihood of maternal versus paternal family history of epilepsy.Interpretation: We found no evidence of a maternal effect on epilepsy risk in this familial epilepsy cohort.Confounding sex imbalances can create the appearance of a maternal effect in upward-looking analyses andmay have impacted prior studies. We discuss possible explanations for the lack of evidence, in familialepilepsies, of the maternal effect observed in population-based studie

    Locally continuously perfect groups of homeomorphisms

    Full text link
    The notion of a locally continuously perfect group is introduced and studied. This notion generalizes locally smoothly perfect groups introduced by Haller and Teichmann. Next, we prove that the path connected identity component of the group of all homeomorphisms of a manifold is locally continuously perfect. The case of equivariant homeomorphism group and other examples are also considered.Comment: 14 page

    X-ray Line Emission from the Hot Stellar Wind of theta 1 Ori C

    Full text link
    We present a first emission line analysis of a high resolution X-ray spectrum of the stellar wind of theta 1 Ori C obtained with the High Energy Transmission grating Spectrometer onboard the Chandra X-ray Observatory. The spectra are resolved into a large number of emission lines from H- and He-like O, Ne, Mg, Si, S, Ar and Fe ions. The He-like Fe XXV and Li-like Fe XXIV appear quite strong indicating very hot emitting regions. From H/He flux ratios, as well as from Fe He/Li emission measure ratios we deduce temperatures ranging from 0.5 to 6.1 x 10^7 K. The He-triplets are very sensitive to density as well. At these temperatures the relative strengths of the intercombination and forbidden lines indicate electron densities well above 10^12 cm^-3. The lines appear significantly broadened from which we deduce a mean velocity of 770 km/s with a spread between 400 and 2000 km/s. Along with results of the deduced emission measure we conclude that the X-ray emission could originate in dense and hot regions with a characteristic size of less then 4 x 10^10 cm.Comment: 4 pages, 3 figure

    Coronal X-ray emission from an intermediate-age brown dwarf

    Full text link
    We report the X-ray detection of the brown dwarf (BD) companion TWA 5B in a ≃12\simeq 12 Myr old pre-main sequence binary system. We clearly resolve the faint companion (35 photons) separated from the X-ray luminous primary by 2 arcsec in a {\it Chandra} ACIS image. TWA 5B shows a soft X-ray spectrum with a low plasma temperature of only 0.3 keV and a constant flux during the 3 hour observation, of which the characteristics are commonly seen in the solar corona. The X-ray luminosity is 4×1027\times10^{27} erg s−1^{-1} (0.1--10 keV band) or log⁡LX/Lbol=−3.4\log L_X/L_{bol} = -3.4. Comparing these properties to both younger and older BDs, we discuss the evolution of the X-ray emission in BDs. During their first few Myr, they exhibit high levels of X-ray activity as seen in higher mass pre-main sequence stars. The level in TWA 5B is still high at t≃12t \simeq 12 Myr in log⁡LX/Lbol\log L_X/L_{bol} while kTkT has already substantially cooled

    Indirect search for Dark Matter with H.E.S.S

    Get PDF
    Observations of the Galactic center region with the H.E.S.S. telescopes have established the existence of a steady, extended source of gamma-ray emission coinciding with the position of the super massive black hole Sgr A*. This is a remarkable finding given the expected presence of dense self-annihilating Dark Matter in the Galactic center region. The self-annihilation process is giving rise to gamma-ray production through hadronization including the production of neutral pions which decay into gamma-rays but also through (loop-suppressed) annihilation into final states of almost mono-energetic photons. We study the observed gamma-ray signal (spectrum and shape) from the Galactic center in the context of Dark Matter annihilation and indicate the prospects for further indirect Dark matter searches with H.E.S.S.Comment: 9 pages, 3 figures. Accepted for Publication in Advances is Space Research, COSPAR meeting Beijing (2006

    First Detection of HCO+ Emission at High Redshift

    Get PDF
    We report the detection of HCO+(1-0) emission towards the Cloverleaf quasar (z=2.56) through observations with the Very Large Array. This is the first detection of ionized molecular gas emission at high redshift (z>2). HCO+ emission is a star formation indicator similar to HCN, tracing dense molecular hydrogen gas (n(H_2) ~= 10^5 cm^{-3}) within star-forming molecular clouds. We derive a lensing-corrected HCO+ line luminosity of L'(HCO+) = 3.5 x 10^9 K km/s pc^2. Combining our new results with CO and HCN measurements from the literature, we find a HCO+/CO luminosity ratio of 0.08 and a HCO+/HCN luminosity ratio of 0.8. These ratios fall within the scatter of the same relationships found for low-z star-forming galaxies. However, a HCO+/HCN luminosity ratio close to unity would not be expected for the Cloverleaf if the recently suggested relation between this ratio and the far-infrared luminosity were to hold. We conclude that a ratio between HCO+ and HCN luminosity close to 1 is likely due to the fact that the emission from both lines is optically thick and thermalized and emerges from dense regions of similar volumes. The CO, HCN and HCO+ luminosities suggest that the Cloverleaf is a composite AGN--starburst system, in agreement with the previous finding that about 20% of the total infrared luminosity in this system results from dust heated by star formation rather than heating by the AGN. We conclude that HCO+ is potentially a good tracer for dense molecular gas at high redshift.Comment: 5 pages, 3 figures, ApJL, in press (accepted May 17, 2006

    Australia Telescope Compact Array Radio Continuum 1384 and 2368 Mhz Observations of Sagittarius B

    Get PDF
    We present images of the Sagittarius (Sgr) B giant molecular cloud at 2368 and 1384 MHz obtained using new, multi-configuration Australia Telescope Compact Array (ATCA) observations. We have combined these observations with archival single-dish observations yielding images at resolutions of 47" by 14" and 27" by 8" at 1384 and 2368 MHz respectively. These observations were motivated by our theoretical work (Protheroe et al. 2008) indicating the possibility that synchrotron emission from secondary electrons and positrons created in hadronic cosmic ray (CR) collisions with the ambient matter of the Sgr B2 cloud could provide a detectable (and possibly linearly polarized) non-thermal radio signal. We find that the only detectable non-thermal emission from the Sgr B region is from a strong source to the south of Sgr B2, which we label Sgr B2 Southern Complex (SC). We find Sgr B2(SC) integrated flux densities of 1.2+/-0.2 Jy at 1384 MHz and 0.7+/-0.1 Jy at 2368 MHz for a source of FWHM size at 1384 MHz of ~54". Despite its non-thermal nature, the synchrotron emission from this source is unlikely to be dominantly due to secondary electrons and positrons. We use polarization data to place 5-sigma upper limits on the level of polarized intensity from the Sgr B2 cloud of 3.5 and 3 mJy/beam at 1384 and 2368 MHz respectively. We also use the angular distribution of the total intensity of archival 330 MHz VLA and the total intensity and polarized emission of our new 1384 MHz and 2368 MHz data to constrain the diffusion coefficient for transport of the parent hadronic CRs into the dense core of Sgr B2 to be no larger than about 1% of that in the Galactic disk. Finally, we have also used the data to perform a spectral and morphological study of the features of the Sgr B cloud and compare and contrast these to previous studies.Comment: 7 pages, 4 figures, matches version published in the Astronomical Journa

    Intensity of singular stress fields of an embedded fibre under pull-out force

    Get PDF
    Previous experimental studies of fibre pull-out test show two dangerous points on the interface. Failure usually occurs at the bonded end of the fibre (Point A) or at the entry point on the surface of the matrix (Point E). Both points have different singular stress fields which causes crack initiation, crack propagation, and final failure. In this paper, intensity of singular stress fields (ISSF) at the fibre bonded end A and ISSF at the intersection point E of the fibre and the surface are discussed. The analysis method focuses on calculating the finite element method (FEM) stress radio by using a reference model and an unknown model. In the unknown model and the reference model, same FEM mesh pattern is applied. To analyse the ISSF at A, the body force method solution is used as the reference model. To analyse the ISSF at E, the reciprocal work contour integral method (RWCIM) solution is used as the reference model. Then, the two ISSFs are compared and discussed by varying the fibre embedded length l in. When l in is shorter, the singular stress at A is larger than the singular stress at E. When l in is longer, the singular stress at E is larger than the ISSF at A.2018 5th Global Conference on Polymer and Composite Materials (PCM 2018), April 10th - 13th, 2018, Kitakyushu, Japa

    The X-ray lightcurve of Sgr A* over the past 150 years inferred from Fe-Ka line reverberation in Galactic Centre molecular clouds

    Full text link
    We examine the temporal and spectral properties of nine Fe-Ka bright molecular clouds within about 30 pc of Sgr A*, in order to understand and constrain the primary energising source of the Fe fluorescence. Significant Fe-Ka variability was detected, with a spatial and temporal pattern consistent with that reported in previous studies. The main breakthrough that sets our paper apart from earlier contributions on this topic is the direct measurement of the column density and the Fe abundance of the MCs in our sample. We used the EW measurements to infer the average Fe abundance within the clouds to be 1.6±\pm0.1 times solar. The cloud column densities derived from the spectral analysis were typically of the order of 1023^{23} cm−2^{-2}, which is significantly higher than previous estimates. This in turn has a significant impact on the inferred geometry and time delays within the cloud system. Past X-ray activity of Sgr A* is the most likely source of ionisation within the molecular clouds in the innermost 30 pc of the Galaxy. In this scenario, the X-ray luminosity required to excite these reflection nebulae is of the order of 1037−1038^{37}-10^{38} erg s−1^{-1}, significantly lower than that estimated for the Sgr B2 molecular cloud. Moreover, the inferred Sgr A* lightcurve over the past 150 years shows a long-term downwards trend punctuated by occasional counter-trend brightening episodes of at least 5 years duration. Finally, we found that contributions to the Fe fluorescence by X-ray transient binaries and cosmic-ray bombardment are very likely, and suggest possible ways to study this latter phenomenon in the near future.Comment: 23 pages, 14 figures, accepted for publication in Astronomy & Astrophysic
    • 

    corecore