66 research outputs found

    Trapping colloids near chemical stripes via critical Casimir forces

    Get PDF
    We study theoretically and experimentally the solvent-mediated critical Casimir force acting on colloidal particles immersed in a binary liquid mixture of water and 2,6-lutidine and close to substrates which are chemically patterned with periodically alternating stripes of antagonistic adsorption preferences. These patterns are experimentally realized via microcontact printing. Upon approaching the critical demixing point of the solvent, normal and lateral critical Casimir forces generate laterally confining effective potentials for the colloids. We analyze in detail the rich behavior of the spherical colloids close to such substrates. For all patterned substrates we investigated, our measurements of these effective potentials agree with the corresponding theoretical predictions. Since both the directions and the strengths of the critical Casimir forces can be tuned by minute temperature changes, this provides a new mechanism for controlling colloids as model systems, opening encouraging perspectives for applications.Comment: Invited contribution to Molecular Physics Special Issue on Bob Evans' 65th birthda

    On the socio-technical potential for onshore wind in Europe : a response to Enevoldsen et al. (2019), Energy Policy, 132, 1092-1100

    Get PDF
    Acknoweldgements: S.W. and J.S. received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (reFUEL, grant agreement No. 758149). J.L. and T.T. received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 715132).Peer reviewedPostprin

    Critical Casimir forces and adsorption profiles in the presence of a chemically structured substrate

    Full text link
    Motivated by recent experiments with confined binary liquid mixtures near demixing, we study the universal critical properties of a system, which belongs to the Ising universality class, in the film geometry. We employ periodic boundary conditions in the two lateral directions and fixed boundary conditions on the two confining surfaces, such that one of them has a spatially homogeneous adsorption preference while the other one exhibits a laterally alternating adsorption preference, resembling locally a single chemical step. By means of Monte Carlo simulations of an improved Hamiltonian, so that the leading scaling corrections are suppressed, numerical integration, and finite-size scaling analysis we determine the critical Casimir force and its universal scaling function for various values of the aspect ratio of the film. In the limit of a vanishing aspect ratio the critical Casimir force of this system reduces to the mean value of the critical Casimir force for laterally homogeneous ++ and +- boundary conditions, corresponding to the surface spins on the two surfaces being fixed to equal and opposite values, respectively. We show that the universal scaling function of the critical Casimir force for small but finite aspect ratios displays a linear dependence on the aspect ratio which is solely due to the presence of the lateral inhomogeneity. We also analyze the order-parameter profiles at criticality and their universal scaling function which allows us to probe theoretical predictions and to compare with experimental data.Comment: revised version, section 5.2 expanded; 53 pages, 12 figures, iopart clas

    Nonadditivity of critical Casimir forces

    Get PDF
    In soft condensed matter physics, effective interactions often emerge due to the spatial confinement of fluctuating fields. For instance, microscopic particles dissolved in a binary liquid mixture are subject to critical Casimir forces whenever their surfaces confine the thermal fluctuations of the order parameter of the solvent close to its critical demixing point. These forces are theoretically predicted to be nonadditive on the scale set by the bulk correlation length of the fluctuations. Here we provide direct experimental evidence of this fact by reporting the measurement of the associated many-body forces. We consider three colloidal particles in optical traps and observe that the critical Casimir force exerted on one of them by the other two differs from the sum of the forces they exert separately. This three-body effect depends sensitively on the distance from the critical point and on the chemical functionalisation of the colloid surfaces

    Torn between two targets: German police officers talk about the use of force

    Full text link
    Considering earlier research into police use of force as well as the judicial and practical frame of police work in Germany, the article presents the results of an empirical study on the individual and collective legitimization of the use of force by German police officers. There are numerous justifications for the use of force expressed by focus group participants in eight German Federal States who were responding to a hypothesized scenario. In the discussions observed within the groups, reference is first made to the state’s duty to prosecute alleged offences and the measures or formal actions to do this—hence, the legal authority to use force. In the course of the discussions, however, it became obvious that illegal violence may occur, although it was not perceived as such by the officers. Overall, and after an intensive analysis of the focus group discussions, it can be stated that use of force (whether legal or not) depends on the police officer’s perception of the resistance of the person being engaged with. In this regard, different social–cultural or physical–material factors can be identified. They have different influences on the individual legitimization of police actions, intertwined with the perception of the situation as constructed by the officer. Three ways of perceiving the situation can be deduced, resulting in different patterns of justification for the use of force

    Harmonized-Multinational qEEG Norms (HarMNqEEG)

    Get PDF
    This paper extends the frequency domain quantitative electroencephalography (qEEG) methods pursuing higher sensitivity to detect Brain Developmental Disorders. Prior qEEG work lacked integration of cross-spectral information omitting important functional connectivity descriptors. Lack of geographical diversity precluded accounting for site-specific variance, increasing qEEG nuisance variance. We ameliorate these weaknesses. i) Create lifespan Riemannian multinational qEEG norms for cross-spectral tensors. These norms result from the HarMNqEEG project fostered by the Global Brain Consortium. We calculate the norms with data from 9 countries, 12 devices, and 14 studies, including 1564 subjects. Instead of raw data, only anonymized metadata and EEG cross-spectral tensors were shared. After visual and automatic quality control, developmental equations for the mean and standard deviation of qEEG traditional and Riemannian DPs were calculated using additive mixed-effects models. We demonstrate qEEG "batch effects" and provide methods to calculate harmonized z-scores. ii) We also show that the multinational harmonized Riemannian norms produce z-scores with increased diagnostic accuracy to predict brain dysfunction at school-age produced by malnutrition only in the first year of life. iii) We offer open code and data to calculate different individual z-scores from the HarMNqEEG dataset. These results contribute to developing bias-free, low-cost neuroimaging technologies applicable in various health settings
    • 

    corecore