3,695 research outputs found
Systematic variation of central mass density slope in early-type galaxies
We study the total density distribution in the central regions (
effective radius, ) of early-type galaxies (ETGs), using data from
the SPIDER survey. We model each galaxy with two components (dark matter halo +
stars), exploring different assumptions for the dark matter (DM) halo profile,
and leaving stellar mass-to-light () ratios as free fitting
parameters to the data. For a Navarro et al. (1996) profile, the slope of the
total mass profile is non-universal. For the most massive and largest ETGs, the
profile is isothermal in the central regions (), while for
the low-mass and smallest systems, the profile is steeper than isothermal, with
slopes similar to those for a constant-M/L profile. For a concentration-mass
relation steeper than that expected from simulations, the correlation of
density slope with mass tends to flatten. Our results clearly point to a
"non-homology" in the total mass distribution of ETGs, which simulations of
galaxy formation suggest may be related to a varying role of dissipation with
galaxy mass.Comment: 3 pages, 1 figure, to appear on the refereed Proceeding of the "The
Universe of Digital Sky Surveys" conference held at the INAF--OAC, Naples, on
25th-28th november 2014, to be published on Astrophysics and Space Science
Proceedings, edited by Longo, Napolitano, Marconi, Paolillo, Iodic
Unsupervised Learning via Mixtures of Skewed Distributions with Hypercube Contours
Mixture models whose components have skewed hypercube contours are developed
via a generalization of the multivariate shifted asymmetric Laplace density.
Specifically, we develop mixtures of multiple scaled shifted asymmetric Laplace
distributions. The component densities have two unique features: they include a
multivariate weight function, and the marginal distributions are also
asymmetric Laplace. We use these mixtures of multiple scaled shifted asymmetric
Laplace distributions for clustering applications, but they could equally well
be used in the supervised or semi-supervised paradigms. The
expectation-maximization algorithm is used for parameter estimation and the
Bayesian information criterion is used for model selection. Simulated and real
data sets are used to illustrate the approach and, in some cases, to visualize
the skewed hypercube structure of the components
Stellar population gradients from cosmological simulations: dependence on mass and environment in local galaxies
The age and metallicity gradients for a sample of group and cluster galaxies
from N-body+hydrodynamical simulation are analyzed in terms of galaxy stellar
mass. Dwarf galaxies show null age gradient with a tail of high and positive
values for systems in groups and cluster outskirts. Massive systems have
generally zero age gradients which turn to positive for the most massive ones.
Metallicity gradients are distributed around zero in dwarf galaxies and become
more negative with mass; massive galaxies have steeper negative metallicity
gradients, but the trend flatten with mass. In particular, fossil groups are
characterized by a tighter distribution of both age and metallicity gradients.
We find a good agreement with both local observations and independent
simulations. The results are also discussed in terms of the central age and
metallicity, as well as the total colour, specific star formation and velocity
dispersion.Comment: 9 pages, 5 figures, accepted for publication on MNRA
Real-world efficacy and safety of nivolumab in previously-treated metastatic renal cell carcinoma, and association between immune-related adverse events and survival: the Italian expanded access program
Background: The Italian Renal Cell Cancer Early Access Program was an expanded access program that allowed access to nivolumab, for patients (pts) with metastatic renal cell carcinoma (mRCC) prior to regulatory approval. Methods: Pts with previously treated advanced or mRCC were eligible to receive nivolumab 3 mg/kg every 2 weeks. Pts included in the analysis had received ≥1 dose of nivolumab and were monitored for drug-related adverse events (drAEs) using CTCAE v.4.0. Immune-related (ir) AEs were defined as AEs displaying a certain, likely or possible correlation with immunotherapy (cutaneous, endocrine, hepatic, gastro-intestinal and pulmonary). The association between overall survival (OS) and irAEs was assessed, and associations between variables were evaluated with a logistic regression model. Results: A total of 389 pts were enrolled between July 2015 and April 2016. Overall, the objective response rate was 23.1%. At a median follow-up of 12 months, the median progression-free survival was 4.5 months (95% CI 3.7-6.2) and the 12-month overall survival rate was 63%. Any grade and grade 3-4 drAEs were reported in 124 (32%) and 27 (7%) of pts, respectively, and there were no treatment-related deaths. Any grade irAEs occurred in 76 (20%) of patients, 8% cutaneous, 4% endocrine, 2% hepatic, 5% gastro-intestinal and 1% pulmonary. Of the 22 drAEs inducing treatment discontinuation, 10 (45%) were irAEs. Pts with drAEs had a significantly longer survival than those without drAEs (median OS 22.5 versus 16.4 months, p = 0.01). Pts with irAEs versus without irAEs had a more significant survival benefit (median OS not reached versus 16.8 months, p = 0.002), confirmed at the landmark analysis at 6 weeks. The occurrence of irAEs displayed a strong association with OS in univariable (HR 0.48, p = 0.003) and multivariable (HR 0.57, p = 0.02) analysis. Conclusions: The appearance of irAEs strongly correlates with survival benefit in a real-life population of mRCC pts treated with nivolumab
Surface alignment and anchoring transitions in nematic lyotropic chromonic liquid crystal
The surface alignment of lyotropic chromonic liquid crystals (LCLCs) can be
not only planar (tangential) but also homeotropic, with self-assembled
aggregates perpendicular to the substrate, as demonstrated by mapping optical
retardation and by three-dimensional imaging of the director field. With time,
the homeotropic nematic undergoes a transition into a tangential state. The
anchoring transition is discontinuous and can be described by a double-well
anchoring potential with two minima corresponding to tangential and homeotropic
orientation.Comment: Accepted for publication in Phys. Rev. Lett. (Accepted Wednesday Jun
02, 2010
Constraining decaying dark energy density models with the CMB temperature-redshift relation
We discuss the thermodynamic and dynamical properties of a variable dark
energy model with density scaling as , z being the
redshift. These models lead to the creation/disruption of matter and radiation,
which affect the cosmic evolution of both matter and radiation components in
the Universe. In particular, we have studied the temperature-redshift relation
of radiation, which has been constrained using a recent collection of cosmic
microwave background (CMB) temperature measurements up to . We find
that, within the uncertainties, the model is indistinguishable from a
cosmological constant which does not exchange any particles with other
components. Future observations, in particular measurements of CMB temperature
at large redshift, will allow to give firmer bounds on the effective equation
of state parameter for such types of dark energy models.Comment: 9 pages, 1 figure, to appear in the Proceedings of the 3rd
Italian-Pakistani Workshop on Relativistic Astrophysics, Lecce 20-22 June
2011, published in Journal of Physics: Conference Series (JPCS
The role of dark matter in the galaxy mass-size relationship
The observed relationship between stellar mass and effective radius for early
type galaxies, pointed out by many authors, is interpreted in the context of
Clausius' virial maximum theory. In this view, it is strongly underlined that
the key of the above mentioned correlation is owing to the presence of a deep
link between cosmology and the existence of the galaxy Fundamental Plane. Then
the ultimate meaning is: understanding visible mass - size correlation and/or
Fundamental Plane means understanding how galaxies form. The mass - size
relationship involves baryon (mainly stellar) mass and its typical dimension
related to the light, but it gets memory of the cosmological mass variance at
the equivalence epoch. The reason is that the baryonic component virializes by
sharing virial energy in about equal amount between baryons and dark matter,
this sharing depending, in turn, on the steepness of the dark matter
distribution. The general strategy consists in using the two-component tensor
virial theorem for determining the virialized baryonic configurations. A King
and a Zhao density profile are assumed for the inner baryonic and the outer
dark matter component, respectively, at the end of the relaxation phase. All
the considerations are restricted to spherical symmetry for simplicity. The
effect of changing the dark-to-baryon mass ratio, m, is investigated inside a
LambdaCDM scenario. A theoretical mass - size relation is expressed for the
baryonic component, which fits fairly well to the data from a recently studied
galaxy sample. Finally, the play of intrinsic dispersion on the mass ratio, m,
is discussed in the light of the cusp/core problem and some consequences are
speculated about the existence of a limit, m_l, expected by the theory.Comment: 36 pages, 8 figures (Accepted for publication in New Astronomy
AGN Jet-induced Feedback in Galaxies. II. Galaxy colours from a multicloud simulation
We study the feedback from an AGN on stellar formation within its host
galaxy, mainly using one high resolution numerical simulation of the jet
propagation within the interstellar medium of an early-type galaxy. In
particular, we show that in a realistic simulation where the jet propagates
into a two-phase ISM, star formation can initially be slightly enhanced and
then, on timescales of few million years, rapidly quenched, as a consequence
both of the high temperatures attained and of the reduction of cloud mass
(mainly due to Kelvin-Helmholtz instabilities). We then introduce a model of
(prevalently) {\em negative} AGN feedback, where an exponentially declining
star formation is quenched, on a very short time scale, at a time t_AGN, due to
AGN feedback. Using the Bruzual & Charlot (2003) population synthesis model and
our star formation history, we predict galaxy colours from this model and match
them to a sample of nearby early-type galaxies showing signs of recent episodes
of star formation (Kaviraj et al. 2007). We find that the quantity t_gal -
t_AGN, where t_gal is the galaxy age, is an excellent indicator of the presence
of feedback processes, and peaks significantly around t_gal - t_AGN \approx
0.85 Gyr for our sample, consistent with feedback from recent energy injection
by AGNs in relatively bright (M_{B} \lsim -19) and massive nearby early-type
galaxies. Galaxies that have experienced this recent feedback show an
enhancement of 3 magnitudes in NUV(GALEX)-g, with respect to the unperturbed,
no-feedback evolution. Hence they can be easily identified in large combined
near UV-optical surveys.Comment: 18 pages, 16 figures, accepted for publication on MNRAS. This version
includes revisions after the referee's repor
- …
