26 research outputs found
The Transcriptional Regulator Rok Binds A+T-Rich DNA and Is Involved in Repression of a Mobile Genetic Element in Bacillus subtilis
The rok gene of Bacillus subtilis was identified as a negative regulator of competence development. It also controls expression of several genes not related to competence. We found that Rok binds to extended regions of the B. subtilis genome. These regions are characterized by a high A+T content and are known or believed to have been acquired by horizontal gene transfer. Some of the Rok binding regions are in known mobile genetic elements. A deletion of rok resulted in higher excision of one such element, ICEBs1, a conjugative transposon found integrated in the B. subtilis genome. When expressed in the Gram negative E. coli, Rok also associated with A+T-rich DNA and a conserved C-terminal region of Rok contributed to this association. Together with previous work, our findings indicate that Rok is a nucleoid associated protein that serves to help repress expression of A+T-rich genes, many of which appear to have been acquired by horizontal gene transfer. In these ways, Rok appears to be functionally analogous to H-NS, a nucleoid associated protein found in Gram negative bacteria and Lsr2 of high G+C Mycobacteria
H-NS mediates the dissociation of a refractory protein–DNA complex during Tn10/IS10 transposition
Tn10/IS10 transposition takes place in the context of a protein–DNA complex called a transpososome. During the reaction, the transpososome undergoes several conformational changes. The host proteins IHF and H-NS, which also are global regulators of gene expression, play important roles in directing these architectural changes. IHF binds tightly to only one of two transposon ends within the transpososome, folding this end into a DNA loop structure. Unfolding this DNA loop is necessary for excising the transposon from flanking donor DNA and preventing integration of the transposon into itself. We show here that efficient DNA loop unfolding relies on the continuity of the flanking donor DNA on the side of the transpososome opposite to the folded transposon end. We also show this same donor DNA is a preferred binding site for H-NS, which promotes opening of the IHF-loop, which is required for productive target interactions. This is counter to the usual mode of H-NS action, which is repressive due to its propensity to coat DNA. The interplay between IHF and H-NS likely serves to couple the rate of transposition to the host cell physiology as both of these proteins are integrated into cellular stress response pathways
Texte zur Theorie der Biographie und Autobiographie. : Christopher F. Laferl, Anja Tippner (Herausgeber).
Paperback / softbackPaper over board
Oligomerization of the chromatin-structuring protein H-NS
H-NS is a major component of the bacterial nucleoid, involved in condensing and packaging DNA and modulating gene expression. The mechanism by which this is achieved remains unclear. Genetic data show that the biological properties of H-NS are influenced by its oligomerization properties. We have applied a variety of biophysical techniques to study the structural basis of oligomerization of the H-NS protein from Salmonella typhimurium. The N-terminal 89 amino acids are responsible for oligomerization. The first 64 residues form a trimer dominated by an alpha-helix, likely to be in coiled-coil conformation. Extending this polypeptide to 89 amino acids generated higher order, heterodisperse oligomers. Similarly, in the full-length protein no single, defined oligomeric state is adopted. The C-terminal 48 residues do not participate in oligomerization and form a monomeric, DNA-binding domain. These Nand C-terminal domains are joined via a flexible linker which enables them to function independently within the context of the full-length protein. This novel mode of oligomerization may account for the unusual binding properties of H-NS
Abnormalities in human pluripotent cells due to reprogramming mechanisms.
Human pluripotent stem cells hold potential for regenerative medicine, but available cell types have significant limitations. Although embryonic stem cells (ES cells) from in vitro fertilized embryos (IVF ES cells) represent the 'gold standard', they are allogeneic to patients. Autologous induced pluripotent stem cells (iPS cells) are prone to epigenetic and transcriptional aberrations. To determine whether such abnormalities are intrinsic to somatic cell reprogramming or secondary to the reprogramming method, genetically matched sets of human IVF ES cells, iPS cells and nuclear transfer ES cells (NT ES cells) derived by somatic cell nuclear transfer (SCNT) were subjected to genome-wide analyses. Both NT ES cells and iPS cells derived from the same somatic cells contained comparable numbers of de novo copy number variations. In contrast, DNA methylation and transcriptome profiles of NT ES cells corresponded closely to those of IVF ES cells, whereas iPS cells differed and retained residual DNA methylation patterns typical of parental somatic cells. Thus, human somatic cells can be faithfully reprogrammed to pluripotency by SCNT and are therefore ideal for cell replacement therapies
Recommended from our members
Abnormalities in human pluripotent cells due to reprogramming mechanisms.
Human pluripotent stem cells hold potential for regenerative medicine, but available cell types have significant limitations. Although embryonic stem cells (ES cells) from in vitro fertilized embryos (IVF ES cells) represent the 'gold standard', they are allogeneic to patients. Autologous induced pluripotent stem cells (iPS cells) are prone to epigenetic and transcriptional aberrations. To determine whether such abnormalities are intrinsic to somatic cell reprogramming or secondary to the reprogramming method, genetically matched sets of human IVF ES cells, iPS cells and nuclear transfer ES cells (NT ES cells) derived by somatic cell nuclear transfer (SCNT) were subjected to genome-wide analyses. Both NT ES cells and iPS cells derived from the same somatic cells contained comparable numbers of de novo copy number variations. In contrast, DNA methylation and transcriptome profiles of NT ES cells corresponded closely to those of IVF ES cells, whereas iPS cells differed and retained residual DNA methylation patterns typical of parental somatic cells. Thus, human somatic cells can be faithfully reprogrammed to pluripotency by SCNT and are therefore ideal for cell replacement therapies
Haploidy in somatic cells is induced by mature oocytes in mice
AbstractHaploidy is naturally observed in gametes; however, attempts of experimentally inducing haploidy in somatic cells have not been successful. Here, we demonstrate that the replacement of meiotic spindles in mature metaphases II (MII) arrested oocytes with nuclei of somatic cells in the G0/G1 stage of cell cycle results in the formation of de novo spindles consisting of somatic homologous chromosomes comprising of single chromatids. Fertilization of such oocytes with sperm triggers the extrusion of one set of homologous chromosomes into the pseudo-polar body (PPB), resulting in a zygote with haploid somatic and sperm pronuclei (PN). Upon culture, 18% of somatic-sperm zygotes reach the blastocyst stage, and 16% of them possess heterozygous diploid genomes consisting of somatic haploid and sperm homologs across all chromosomes. We also generate embryonic stem cells and live offspring from somatic-sperm embryos. Our finding may offer an alternative strategy for generating oocytes carrying somatic genomes.</jats:p
