141 research outputs found

    Multimode vibrational effects in single molecule conductance: A nonequilibrium Green's function approach

    Full text link
    The role of multimode vibrational dynamics in electron transport through single molecule junctions is investigated. The study is based on a generic model, which describes charge transport through a single molecule that is attached to metal leads. To address vibrationally-coupled electron transport, we employ a nonequilibrium Green's function approach that extends a method recently proposed by Galperin et al. [Phys. Rev. B 73, 045314 (2006)] to multiple vibrational modes. The methodology is applied to two systems: a generic model with two vibrational degrees of freedom and benzenedibutanethiolate covalently bound to gold electrodes. The results show that the coupling to multiple vibrational modes can have a significant effect on the conductance of a molecular junction. In particular, we demonstrate the effect of electronically induced coupling between different vibrational modes and study nonequilibrium vibrational effects by calculating the current-induced excitation of vibrational modes.Comment: 31 pages, 10 figure

    Theory of Vibrationally Inelastic Electron Transport through Molecular Bridges

    Full text link
    Vibrationally inelastic electron transport through a molecular bridge that is connected to two leads is investigated. The study is based on a generic model of vibrational excitation in resonant transmission of electrons through a molecular junction. Employing methods from electron-molecule scattering theory, the transmittance through the molecular bridge can be evaluated numerically exactly. The current through the junction is obtained approximately using a Landauer-type formula. Considering different parameter regimes, which include both the case of a molecular bridge that is weakly coupled to the leads, resulting in narrow resonance structures, and the opposite case of a broad resonance caused by strong interaction with the leads, we investigate the characteristic effects of coherent and dissipative vibrational motion on the electron transport. Furthermore, the validity of widely used approximations such as the wide-band approximation and the restriction to elastic transport mechanisms is investigated in some detail.Comment: Submited to PRB, revised version according to comments of referees (minor text changes and new citations

    Semiclassical Approximations in Phase Space with Coherent States

    Get PDF
    We present a complete derivation of the semiclassical limit of the coherent state propagator in one dimension, starting from path integrals in phase space. We show that the arbitrariness in the path integral representation, which follows from the overcompleteness of the coherent states, results in many different semiclassical limits. We explicitly derive two possible semiclassical formulae for the propagator, we suggest a third one, and we discuss their relationships. We also derive an initial value representation for the semiclassical propagator, based on an initial gaussian wavepacket. It turns out to be related to, but different from, Heller's thawed gaussian approximation. It is very different from the Herman--Kluk formula, which is not a correct semiclassical limit. We point out errors in two derivations of the latter. Finally we show how the semiclassical coherent state propagators lead to WKB-type quantization rules and to approximations for the Husimi distributions of stationary states.Comment: 80 pages, 4 figure

    Light-Induced Responses of Slow Oscillatory Neurons of the Rat Olivary Pretectal Nucleus

    Get PDF
    Background: The olivary pretectal nucleus (OPN) is a small midbrain structure responsible for pupil constriction in response to eye illumination. Previous electrophysiological studies have shown that OPN neurons code light intensity levels and therefore are called luminance detectors. Recently, we described an additional population of OPN neurons, characterized by a slow rhythmic pattern of action potentials in light-on conditions. Rhythmic patterns generated by these cells last for a period of approximately 2 minutes. Methodology: To answer whether oscillatory OPN cells are light responsive and whether oscillatory activity depends on retinal afferents, we performed in vivo electrophysiology experiments on urethane anaesthetized Wistar rats. Extracellular recordings were combined with changes in light conditions (light-dark-light transitions), brief light stimulations of the contralateral eye (diverse illuminances) or intraocular injections of tetrodotoxin (TTX). Conclusions: We found that oscillatory neurons were able to fire rhythmically in darkness and were responsive to eye illumination in a manner resembling that of luminance detectors. Their firing rate increased together with the strength of the light stimulation. In addition, during the train of light pulses, we observed two profiles of responses: oscillationpreserving and oscillation-disrupting, which occurred during low- and high-illuminance stimuli presentation respectively. Moreover, we have shown that contralateral retina inactivation eliminated oscillation and significantly reduced the firin

    Basis set generation for quantum dynamics simulations using simple trajectory-based methods

    Get PDF
    Methods for solving the time-dependent Schrödinger equation generally employ either a global static basis set, which is fixed at the outset, or a dynamic basis set, which evolves according to classical-like or variational equations of motion; the former approach results in the well-known exponential scaling with system size, while the latter can suffer from challenging numerical problems, such as singular matrices, as well as violation of energy conservation. Here, we suggest a middle road: building a basis set using trajectories to place time-independent basis functions in the regions of phase space relevant to wave function propagation. This simple approach, which potentially circumvents many of the problems traditionally associated with global or dynamic basis sets, is successfully demonstrated for two challenging benchmark problems in quantum dynamics, namely, relaxation dynamics following photoexcitation in pyrazine, and the spin Boson model

    Computational Investigation of Acene-Modified Zinc-Porphyrin Based Sensitizers for Dye-Sensitized Solar Cells

    Full text link

    Simulation of Electron Transfer and Electron Transport in Molecular Systems at Surfaces

    Get PDF
    We have investigated electron transfer and transport processes in several molecular systems adsorbed at metal surfaces using a methodology that combines first-principles electronic structure methods with quantum dynamics and transport approaches. Specifically, we have analysed the molecular factors that control electron transfer in a series of nitrile-substituted alkanethiolate self-assembled monolayer models adsorbed at the Au(111) surface that differ in the size of the aliphatic spacer chain. In addition, we have analysed the possibility of using a proton transfer reaction triggered by an external electrostatic field as a novel mechanism for switching a molecular junction. To demonstrate the feasibility of the process, we have investigated electron transport in a junction containing a molecular bridge that can exist in two tautomeric forms, [2,5-(4-hydroxypyridine)] and 2,5-[4(1H)-pyridone], that exhibit very different conductance properties
    corecore