819 research outputs found

    Cold ultrarelativistic pulsar winds as potential sources of galactic gamma-ray lines above 100 GeV

    Full text link
    The evidence of a line-like spectral feature at 130 GeV recently reported from some parts of the galactic plane poses serious challenges for any interpretation of this surprise discovery. It is generally believed that the unusually narrow profile of the spectral line cannot be explained by conventional processes in astrophysical objects, and, if real, is likely to be associated with Dark Matter. In this paper we argue that cold ultrarelativistic pulsar winds can be alternative sources of very narrow gamma-ray lines. We demonstrate that Comptonization of a cold ultrarelativistic electron-positron pulsar wind in the deep Klein-Nishina regime can readily provide very narrow distinct gamma-ray line features. To verify this prediction, we produced photon count maps based on the Fermi LAT data in the energy interval 100 to 140 GeV. We confirm earlier reports of the presence of marginal gamma-ray line-like signals from three regions of the galactic plane. Although the maps show some structure inside these regions, unfortunately the limited photon statistics do not allow any firm conclusion in this regard. The confirmation of 130 GeV line emission by low-energy threshold atmospheric Cherenkov telescope systems, in particular by the new 27 m diameter dish of the H.E.S.S. array, would be crucial for resolving the spatial structure of the reported hotspots, and thus for distinguishing between the Dark Matter and Pulsar origins of the `Fermi Lines'.Comment: 5 pages. 4 figure

    BOSS Great Wall: morphology, luminosity, and mass

    Get PDF
    We study the morphology, luminosity and mass of the superclusters from the BOSS Great Wall (BGW), a recently discovered very rich supercluster complex at the redshift z=0.47z = 0.47. We have employed the Minkowski functionals to quantify supercluster morphology. We calculate supercluster luminosities and masses using two methods. Firstly, we used data about the luminosities and stellar masses of high stellar mass galaxies with log(M/h1M)11.3\log(M_*/h^{-1}M_\odot) \geq 11.3. Secondly, we applied a scaling relation that combines morphological and physical parameters of superclusters to obtain supercluster luminosities, and obtained supercluster masses using the mass-to-light ratios found for local rich superclusters. We find that the BGW superclusters are very elongated systems, with shape parameter values of less than 0.20.2. This value is lower than that found for the most elongated local superclusters. The values of the fourth Minkowski functional V3V_3 for the richer BGW superclusters (V3=7V_3 = 7 and 1010) show that they have a complicated and rich inner structure. We identify two Planck SZ clusters in the BGW superclusters, one in the richest BGW supercluster, and another in one of the poor BGW superclusters. The luminosities of the BGW superclusters are in the range of 18× 1013h2L1 - 8\times~10^{13}h^{-2}L_\odot, and masses in the range of 0.42.1× 1016h1M0.4 - 2.1\times~10^{16}h^{-1}M_\odot. Supercluster luminosities and masses obtained with two methods agree well. We conclude that the BGW is a complex of massive, luminous and large superclusters with very elongated shape. The search and detailed study, including the morphology analysis of the richest superclusters and their complexes from observations and simulations can help us to understand formation and evolution of the cosmic web.Comment: Comments: 10 pages, 2 figures, A&A, in pres

    Enhancing Land Development Decision-Making to Reduce Water Quality Impacts

    Get PDF
    2010 S.C. Water Resources Conference - Science and Policy Challenges for a Sustainable Futur

    Atherosclerotic Plaque Stability Is Affected by the Chemokine CXCL10 in Both Mice and Humans.

    Get PDF
    Background. The chemokine CXCL10 is specifically upregulated during experimental development of plaque with an unstable phenotype. In this study we evaluated the functional consequences of these findings in mice and humans. Methods and Results. In ApoE(-/-) mice, we induced unstable plaque with using a flow-altering device around the carotid artery. From week 1 to 4, mice were injected with a neutralizing CXCL10 antibody. After 9 weeks, CXCL10 inhibition resulted in a more stable plaque phenotype: collagen increased by 58% (P = 0.002), smooth muscle cell content increased 2-fold (P = 0.03), while macrophage MHC class II expression decreased by 50% (P = 0.005). Also, the size of necrotic cores decreased by 41% (P = 0.01). In 106 human carotid endarterectomy specimens we found that increasing concentrations of CXCL10 strongly associate with an increase in atheromatous plaque phenotype (ANOVA, P = 0.003), with high macrophage, low smooth muscle cell, and low collagen content. Conclusions. In the present study we showed that CXCL10 is associated with the development of vulnerable plaque in human and mice. We conclude that CXCL10 might provide a new lead towards plaque-stabilizing therapy

    Проблемність законодавчого забезпечення працевлаштування молоді

    Get PDF
    RATIONALE: Neovascularization stimulated by local or recruited stem cells after ischemia is a key process that salvages damaged tissue and shows similarities with embryonic vascularization. Apelin receptor (Aplnr) and its endogenous ligand apelin play an important role in cardiovascular development. However, the role of apelin signaling in stem cell recruitment after ischemia is unknown. OBJECTIVE: To investigate the role of apelin signaling in recruitment after ischemia. METHODS AND RESULTS: Aplnr was specifically expressed in circulating cKit+/Flk1+ cells but not in circulating Sca1+/Flk1+ and Lin+ cells. cKit+/Flk1+/Aplnr+ cells increased significantly early after myocardial ischemia but not after hind limb ischemia, indicative of an important role for apelin/Aplnr in cell recruitment during the nascent biological repair response after myocardial damage. In line with this finding, apelin expression was upregulated in the infarcted myocardium. Injection of apelin into the ischemic myocardium resulted in accelerated and increased recruitment of cKit+/Flk1+/Aplnr+ cells to the heart. Recruited Aplnr+/cKit+/Flk1+ cells promoted neovascularization in the peri-infarct area by paracrine activity rather than active transdifferentiation, resulting into cardioprotection as indicated by diminished scar formation and improved residual cardiac function. Aplnr knockdown in the bone marrow resulted in aggravation of myocardial ischemia-associated damage, which could not be rescued by apelin. CONCLUSIONS: We conclude that apelin functions as a new and potent chemoattractant for circulating cKit+/Flk1+/Aplnr+ cells during early myocardial repair, providing myocardial protection against ischemic damage by improving neovascularization via paracine action

    Recovering 3D structural properties of galaxies from SDSS-like photometry

    Full text link
    Because of the 3D nature of galaxies, an algorithm for constructing spatial density distribution models of galaxies on the basis of galaxy images has many advantages over surface density distribution approximations. We present a method for deriving spatial structure and overall parameters of galaxies from images and estimate its accuracy and derived parameter degeneracies on a sample of idealised model galaxies. The test galaxies consist of a disc-like component and a spheroidal component with varying proportions and properties. Both components are assumed to be axially symmetric and coplanar. We simulate these test galaxies as if observed in the SDSS project through ugriz filters, thus gaining a set of realistically imperfect images of galaxies with known intrinsic properties. These artificial SDSS galaxies were thereafter remodelled by approximating the surface brightness distribution with a 2D projection of a bulge+disc spatial distribution model and the restored parameters were compared to the initial ones. Down to the r-band limiting magnitude 18, errors of the restored integral luminosities and colour indices remain within 0.05 mag and errors of the luminosities of individual components within 0.2 mag. Accuracy of the restored bulge-to-disc ratios (B/D) is within 40% in most cases, and becomes worse for galaxies with low B/D, but the general balance between bulges and discs is not shifted systematically. Assuming that the intrinsic disc axial ratio is < 0.3, the inclination angles can be estimated with errors < 5deg for most of the galaxies with B/D < 2 and with errors < 15deg up to B/D = 6. Errors of the recovered sizes of the galactic components are below 10% in most cases. In general, models of disc components are more accurate than models of spheroidal components for geometrical reasons.Comment: 15 pages, 13 figures, accepted for publication in RA

    Common Variants Associated With OSMR Expression Contribute to Carotid Plaque Vulnerability, but Not to Cardiovascular Disease in Humans

    Get PDF
    Background and Aims: Oncostatin M (OSM) signaling is implicated in atherosclerosis, however the mechanism remains unclear. We investigated the impact of common genetic variants in OSM and its receptors, OSMR and LIFR, on overall plaque vulnerability, plaque phenotype, intraplaque OSMR and LIFR expression, coronary artery calcification burden and cardiovascular disease susceptibility. Methods and Results: We queried Genotype-Tissue Expression data and found that rs13168867 (C allele) was associated with decreased OSMR expression and that rs10491509 (A allele) was associated with increased LIFR expression in arterial tissues. No variant was significantly associated with OSM expression. We associated these two variants with plaque characteristics from 1,443 genotyped carotid endarterectomy patients in the Athero-Express Biobank Study. After correction for multiple testing, rs13168867 was significantly associated with an increased overall plaque vulnerability (β = 0.118 ± s.e. = 0.040, p = 3.00 × 10−3, C allele). Looking at individual plaque characteristics, rs13168867 showed strongest associations with intraplaque fat (β = 0.248 ± s.e. = 0.088, p = 4.66 × 10−3, C allele) and collagen content (β = −0.259 ± s.e. = 0.095, p = 6.22 × 10−3, C allele), but these associations were not significant after correction for multiple testing. rs13168867 was not associated with intraplaque OSMR expression. Neither was intraplaque OSMR expression associated with plaque vulnerability and no known OSMR eQTLs were associated with coronary artery calcification burden, or cardiovascular disease susceptibility. No associations were found for rs10491509 in the LIFR locus. Conclusions: Our study suggests that rs1316887 in the OSMR locus is associated with increased plaque vulnerability, but not with coronary calcification or cardiovascular disease risk. It remains unclear through which precise biological mechanisms OSM signaling exerts its effects on plaque morphology. However, the OSM-OSMR/LIFR pathway is unlikely to be causally involved in lifetime cardiovascular disease susceptibility

    Gamma Lines without a Continuum: Thermal Models for the Fermi-LAT 130 GeV Gamma Line

    Get PDF
    Recent claims of a line in the Fermi-LAT photon spectrum at 130 GeV are suggestive of dark matter annihilation in the galactic center and other dark matter-dominated regions. If the Fermi feature is indeed due to dark matter annihilation, the best-fit line cross-section, together with the lack of any corresponding excess in continuum photons, poses an interesting puzzle for models of thermal dark matter: the line cross-section is too large to be generated radiatively from open Standard Model annihilation modes, and too small to provide efficient dark matter annihilation in the early universe. We discuss two mechanisms to solve this puzzle and illustrate each with a simple reference model in which the dominant dark matter annihilation channel is photonic final states. The first mechanism we employ is resonant annihilation, which enhances the annihilation cross-section during freezeout and allows for a sufficiently large present-day annihilation cross section. Second, we consider cascade annihilation, with a hierarchy between p-wave and s-wave processes. Both mechanisms require mass near-degeneracies and predict states with masses closely related to the dark matter mass; resonant freezeout in addition requires new charged particles at the TeV scale.Comment: 17 pages, 8 figure
    corecore