3,145 research outputs found

    NUT-Charged Black Holes in Gauss-Bonnet Gravity

    Full text link
    We investigate the existence of Taub-NUT/bolt solutions in Gauss-Bonnet gravity and obtain the general form of these solutions in dd dimensions. We find that for all non-extremal NUT solutions of Einstein gravity having no curvature singularity at r=Nr=N, there exist NUT solutions in Gauss-Bonnet gravity that contain these solutions in the limit that the Gauss-Bonnet parameter α\alpha goes to zero. Furthermore there are no NUT solutions in Gauss-Bonnet gravity that yield non-extremal NUT solutions to Einstein gravity having a curvature singularity at r=Nr=N in the limit % \alpha \to 0. Indeed, we have non-extreme NUT solutions in 2+2k2+2k dimensions with non-trivial fibration only when the 2k2k-dimensional base space is chosen to be CP2k\mathbb{CP}^{2k}. We also find that the Gauss-Bonnet gravity has extremal NUT solutions whenever the base space is a product of 2-torii with at most a 2-dimensional factor space of positive curvature. Indeed, when the base space has at most one positively curved two dimensional space as one of its factor spaces, then Gauss-Bonnet gravity admits extreme NUT solutions, even though there a curvature singularity exists at r=Nr=N. We also find that one can have bolt solutions in Gauss-Bonnet gravity with any base space with factor spaces of zero or positive constant curvature. The only case for which one does not have bolt solutions is in the absence of a cosmological term with zero curvature base space.Comment: 20 pages, referrence added, a few typos correcte

    Localizing gravity on exotic thick 3-branes

    Full text link
    We consider localization of gravity on thick branes with a non trivial structure. Double walls that generalize the thick Randall-Sundrum solution, and asymmetric walls that arise from a Z_2-symmetric scalar potential, are considered. We present a new asymmetric solution: a thick brane interpolating between two AdS_5 spacetimes with different cosmological constants, which can be derived from a ``fake supergravity'' superpotential, and show that it is possible to confine gravity on such branes.Comment: Final version, minor changes, references adde

    An integrated care pathway for menorrhagia across the primary–secondary interface : patients' experience, clinical outcomes, and service utilisation

    Get PDF
    Background: ‘‘Referral’’ characterises a significant area of interaction between primary and secondary care. Despite advantages, it can be inflexible, and may lead to duplication. Objective: To examine the outcomes of an integrated model that lends weight to general practitioner (GP)-led evidence based care. Design: A prospective, non-random comparison of two services: women attending the new (Bridges) pathway compared with those attending a consultant-led one-stop menstrual clinic (OSMC). Patients’ views were examined using patient career diaries, health and clinical outcomes, and resource utilisation. Follow-up was for 8 months. Setting: A large teaching hospital and general practices within one primary care trust (PCT). Results: Between March 2002 and June 2004, 99 women in the Bridges pathway were compared with 94 women referred to the OSMC by GPs from non-participating PCTs. The patient career diary demonstrated a significant improvement in the Bridges group for patient information, fitting in at the point of arrangements made for the patient to attend hospital (ease of access) (p,0.001), choice of doctor (p = 0.020), waiting time for an appointment (p,0.001), and less ‘‘limbo’’ (patient experience of non-coordination between primary and secondary care) (p,0.001). At 8 months there were no significant differences between the two groups in surgical and medical treatment rates or in the use of GP clinic appointments. Significantly fewer (traditional) hospital outpatient appointments were made in the Bridges group than in the OSMC group (p,0.001). Conclusion: A general practice-led model of integrated care can significantly reduce outpatient attendance while improving patient experience, and maintaining the quality of care

    Relativistic Acoustic Geometry

    Get PDF
    Sound wave propagation in a relativistic perfect fluid with a non-homogeneous isentropic flow is studied in terms of acoustic geometry. The sound wave equation turns out to be equivalent to the equation of motion for a massless scalar field propagating in a curved space-time geometry. The geometry is described by the acoustic metric tensor that depends locally on the equation of state and the four-velocity of the fluid. For a relativistic supersonic flow in curved space-time the ergosphere and acoustic horizon may be defined in a way analogous the non-relativistic case. A general-relativistic expression for the acoustic analog of surface gravity has been found.Comment: 14 pages, LaTe

    Yang-Mills Inspired Solutions for General Relativity

    Get PDF
    Several exact, cylindrically symmetric solutions to Einstein's vacuum equations are given. These solutions were found using the connection between Yang-Mills theory and general relativity. Taking known solutions of the Yang-Mills equations (e.g. the topological BPS monopole solutions) it is possible to construct exact solutions to the general relativistic field equations. Although the general relativistic solutions were found starting from known solutions of Yang-Mills theory they have different physical characteristics.Comment: 13 pages LaTe

    Colliding axisymmetric pp-waves

    Get PDF
    An exact solution is found describing the collision of axisymmetric pp-waves with M=0. They are impulsive in character and their coordinate singularities become point curvature singularities at the boundaries of the interaction region. The solution is conformally flat. Concrete examples are given, involving an ultrarelativistic black hole against a burst of pure radiation or two colliding beam- like waves.Comment: 6 pages, REVTeX, some misprints are correcte

    Taub-NUT/Bolt Black Holes in Gauss-Bonnet-Maxwell Gravity

    Full text link
    We present a class of higher dimensional solutions to Gauss-Bonnet-Maxwell equations in 2k+22k+2 dimensions with a U(1) fibration over a 2k2k-dimensional base space B\mathcal{B}. These solutions depend on two extra parameters, other than the mass and the NUT charge, which are the electric charge qq and the electric potential at infinity VV. We find that the form of metric is sensitive to geometry of the base space, while the form of electromagnetic field is independent of B\mathcal{B}. We investigate the existence of Taub-NUT/bolt solutions and find that in addition to the two conditions of uncharged NUT solutions, there exist two other conditions. These two extra conditions come from the regularity of vector potential at r=Nr=N and the fact that the horizon at r=Nr=N should be the outer horizon of the black hole. We find that for all non-extremal NUT solutions of Einstein gravity having no curvature singularity at r=Nr=N, there exist NUT solutions in Gauss-Bonnet-Maxwell gravity. Indeed, we have non-extreme NUT solutions in 2+2k2+2k dimensions only when the 2k2k-dimensional base space is chosen to be CP2k\mathbb{CP}^{2k}. We also find that the Gauss-Bonnet-Maxwell gravity has extremal NUT solutions whenever the base space is a product of 2-torii with at most a 2-dimensional factor space of positive curvature, even though there a curvature singularity exists at r=Nr=N. We also find that one can have bolt solutions in Gauss-Bonnet-Maxwell gravity with any base space. The only case for which one does not have black hole solutions is in the absence of a cosmological term with zero curvature base space.Comment: 23 pages, 3 figures, typos fixed, a few references adde

    Higher Dimensional Taub-NUTs and Taub-Bolts in Einstein-Maxwell Gravity

    Full text link
    We present a class of higher dimensional solutions to Einstein-Maxwell equations in d-dimensions. These solutions are asymptotically locally flat, de-Sitter, or anti-de Sitter space-times. The solutions we obtained depend on two extra parameters other than the mass and the nut charge. These two parameters are the electric charge, q and the electric potential at infinity, V, which has a non-trivial contribution. We Analyze the conditions one can impose to obtain Taub-Nut or Taub-Bolt space-times, including the four-dimensional case. We found that in the nut case these conditions coincide with that coming from the regularity of the one-form potential at the horizon. Furthermore, the mass parameter for the higher dimensional solutions depends on the nut charge and the electric charge or the potential at infinity.Comment: 11 pages, LaTe

    Action functionals for relativistic perfect fluids

    Get PDF
    Action functionals describing relativistic perfect fluids are presented. Two of these actions apply to fluids whose equations of state are specified by giving the fluid energy density as a function of particle number density and entropy per particle. Other actions apply to fluids whose equations of state are specified in terms of other choices of dependent and independent fluid variables. Particular cases include actions for isentropic fluids and pressureless dust. The canonical Hamiltonian forms of these actions are derived, symmetries and conserved charges are identified, and the boundary value and initial value problems are discussed. As in previous works on perfect fluid actions, the action functionals considered here depend on certain Lagrange multipliers and Lagrangian coordinate fields. Particular attention is paid to the interpretations of these variables and to their relationships to the physical properties of the fluid.Comment: 40 pages, plain Te

    General Gauss-Bonnet brane cosmology

    Get PDF
    We consider 5-dimensional spacetimes of constant 3-dimensional spatial curvature in the presence of a bulk cosmological constant. We find the general solution of such a configuration in the presence of a Gauss-Bonnet term. Two classes of non-trivial bulk solutions are found. The first class is valid only under a fine tuning relation between the Gauss-Bonnet coupling constant and the cosmological constant of the bulk spacetime. The second class of solutions are static and are the extensions of the AdS-Schwarzchild black holes. Hence in the absence of a cosmological constant or if the fine tuning relation is not true, the generalised Birkhoff's staticity theorem holds even in the presence of Gauss-Bonnet curvature terms. We examine the consequences in brane world cosmology obtaining the generalised Friedmann equations for a perfect fluid 3-brane and discuss how this modifies the usual scenario.Comment: 20 pages, no figures, typos corrected, refs added, section IV changed yielding novel result
    corecore