Abstract

Action functionals describing relativistic perfect fluids are presented. Two of these actions apply to fluids whose equations of state are specified by giving the fluid energy density as a function of particle number density and entropy per particle. Other actions apply to fluids whose equations of state are specified in terms of other choices of dependent and independent fluid variables. Particular cases include actions for isentropic fluids and pressureless dust. The canonical Hamiltonian forms of these actions are derived, symmetries and conserved charges are identified, and the boundary value and initial value problems are discussed. As in previous works on perfect fluid actions, the action functionals considered here depend on certain Lagrange multipliers and Lagrangian coordinate fields. Particular attention is paid to the interpretations of these variables and to their relationships to the physical properties of the fluid.Comment: 40 pages, plain Te

    Similar works

    Available Versions

    Last time updated on 01/04/2019