Sound wave propagation in a relativistic perfect fluid with a non-homogeneous
isentropic flow is studied in terms of acoustic geometry. The sound wave
equation turns out to be equivalent to the equation of motion for a massless
scalar field propagating in a curved space-time geometry. The geometry is
described by the acoustic metric tensor that depends locally on the equation of
state and the four-velocity of the fluid. For a relativistic supersonic flow in
curved space-time the ergosphere and acoustic horizon may be defined in a way
analogous the non-relativistic case. A general-relativistic expression for the
acoustic analog of surface gravity has been found.Comment: 14 pages, LaTe