336 research outputs found
A real quaternion spherical ensemble of random matrices
One can identify a tripartite classification of random matrix ensembles into
geometrical universality classes corresponding to the plane, the sphere and the
anti-sphere. The plane is identified with Ginibre-type (iid) matrices and the
anti-sphere with truncations of unitary matrices. This paper focusses on an
ensemble corresponding to the sphere: matrices of the form \bY= \bA^{-1} \bB,
where \bA and \bB are independent matrices with iid standard
Gaussian real quaternion entries. By applying techniques similar to those used
for the analogous complex and real spherical ensembles, the eigenvalue jpdf and
correlation functions are calculated. This completes the exploration of
spherical matrices using the traditional Dyson indices .
We find that the eigenvalue density (after stereographic projection onto the
sphere) has a depletion of eigenvalues along a ring corresponding to the real
axis, with reflective symmetry about this ring. However, in the limit of large
matrix dimension, this eigenvalue density approaches that of the corresponding
complex ensemble, a density which is uniform on the sphere. This result is in
keeping with the spherical law (analogous to the circular law for iid
matrices), which states that for matrices having the spherical structure \bY=
\bA^{-1} \bB, where \bA and \bB are independent, iid matrices the
(stereographically projected) eigenvalue density tends to uniformity on the
sphere.Comment: 25 pages, 3 figures. Added another citation in version
Toward Engineering Chiral Rodlike Metal-Organic Frameworks with Rare Topologies
The establishment of novel design strategies to target chiral rodlike MOFs, elusively faced until now, is one of the most straightforward manners to widen the scope of MOFs. Here we describe our last advances on the application of the metalloligand design strategy toward the development of efficient routes to obtain chiral rodlike MOFs. To this end, we have used as precursor an enantiopure homochiral hexanuclear wheel (1), derived from the amino acid d-valine, which, after a supramolecular reorganization into a one-dimensional homochiral chain-with the same configuration as 1-led to the formation of a homochiral rodlike MOF (2) exhibiting rare etd topology
Evaluation of the National Research Council (2001) dairy model and derivation of new prediction equations. 1. Digestibility of fiber, fat, protein, and nonfiber carbohydrate
Evaluation of ration balancing systems such as the National Research Council (NRC) Nutrient Requirementsseries is important for improving predictions of animal nutrient requirements and advancing feeding strategies. This work used a literature data set (n = 550) to evaluate predictions of total-tract digested neutral detergent fiber (NDF), fatty acid (FA), crude protein (CP), and nonfiber carbohydrate (NFC) estimated by the NRC (2001) dairy model. Mean biases suggested that the NRC (2001) lactating cow model overestimated true FA and CP digestibility by 26 and 7%, respectively, and under-predicted NDF digestibility by 16%. All NRC (2001) estimates had notable mean and slope biases and large root mean squared prediction error (RMSPE), and concordance (CCC) ranged from poor to good. Predicting NDF digestibility with independent equations for legumes, corn silage, other forages, and nonforage feeds improved CCC (0.85 vs. 0.76) compared with the re-derived NRC (2001) equation form (NRC equation with parameter estimates re-derived against this data set). Separate FA digestion coefficients were derived for different fat supplements (animal fats, oils, and other fat types) and for the basal diet. This equation returned improved (from 0.76 to 0.94) CCC compared with the re-derived NRC (2001) equation form. Unique CP digestibility equations were derived for forages, animal protein feeds, plant protein feeds, and other feeds, which improved CCC compared with the re-derived NRC (2001) equation form (0.74 to 0.85). New NFC digestibility coefficients were derived for grain-specific starch digestibilities, with residual organic matter assumed to be 98% digestible. A Monte Carlo cross-validation was performed to evaluate repeatability of model fit. In this procedure, data were randomly subsetted 500 times into derivation (60%) and evaluation (40%) data sets, and equations were derived using the derivation data and then evaluated against the independent evaluation data. Models derived with random study effects demonstrated poor repeatability of fit in independent evaluation. Similar equations derived without random study effects showed improved fit against independent data and little evidence of biased parameter estimates associated with failure to include study effects. The equations derived in this analysis provide interesting insight into how NDF, starch, FA, and CP digestibilities are affected by intake, feed type, and diet composition
Biomimetic self-assembling copolymer-hydroxyapatite nanocomposites with the nanocrystal size controlled by citrate
Citrate binds strongly to the surface of calcium phosphate (apatite) nanocrystals in bone and is thought to prevent crystal thickening. In this work, citrate added as a regulatory element enabled molecular control of the size and stability of hydroxyapatite (HAp) nanocrystals in synthetic nanocomposites, fabricated with self-assembling block copolymer templates. The decrease of the HAp crystal size within the polymer matrix with increasing citrate concentration was documented by solid-state nuclear magnetic resonance (NMR) techniques and wide-angle X-ray diffraction (XRD), while the shapes of HAp nanocrystals were determined by transmission electron microscopy (TEM). Advanced NMR techniques were used to characterize the interfacial species and reveal enhanced interactions between mineral and organic matrix, concomitant with the size effects. The surface-to-volume ratios determined by NMR spectroscopy and long-range 31P{1H} dipolar dephasing show that 2, 10, and 40 mM citrate changes the thicknesses of the HAp crystals from 4 nm without citrate to 2.9, 2.8, and 2.3 nm, respectively. With citrate concentrations comparable to those in body fluids, HAp nanocrystals of sizes and morphologies similar to those in avian and bovine bones have been produced
The spatial structure of lithic landscapes : the late holocene record of east-central Argentina as a case study
Fil: Barrientos, Gustavo. División Antropología. Facultad de Ciencias Naturales y Museo. Universidad Nacional de La Plata; ArgentinaFil: Catella, Luciana. División Arqueología. Facultad de Ciencias Naturales y Museo. Universidad Nacional de La Plata; ArgentinaFil: Oliva, Fernando. Centro Estudios Arqueológicos Regionales. Facultad de Humanidades y Artes. Universidad Nacional de Rosario; Argentin
A comprehensive evaluation of the kinetic method applied in the determination of the proton affinity of the nucleic acid molecules
Nucleation and crystallization in bio-based immiscible polyester blends
Bio-based thermoplastic polyesters are highly promising materials as they combine interesting thermal and physical properties and in many cases biodegradability. However, sometimes the best property balance can only be achieved by blending in order to improve barrier properties, biodegradability or mechanical properties. Nucleation, crystallization and morphology are key factors that can dominate all these properties in crystallizable biobased polyesters. Therefore, their understanding, prediction and tailoring is essential. In this work, after a brief introduction about immiscible polymer blends, we summarize the crystallization behavior of the most important bio-based (and immiscible) polyester blends, considering examples of double-crystalline components. Even though in some specific blends (e.g., polylactide/polycaprolactone) many efforts have been made to understand the influence of blending on the nucleation, crystallization and morphology of the parent components, there are still many points that have yet to be understood. In the case of other immiscible polyester blends systems, the literature is scarce, opening up opportunities in this environmentally important research topic.The authors would like to acknowledge funding by the BIODEST project ((RISE) H2020-MSCA-RISE-2017-778092
Towards liver-directed gene therapy: Retrovirus-mediated gene transfer into human hepatocytes
Liver-directed gene therapy is being considered in the treatment of inherited metabolic diseases. One approach we are considering is the transplantation of autologous hepatocytes that have been genetically modified with recombinant retroviruses ex vivo. We describe, in this report, techniques for isolating human hepatocytes and efficiently transducing recombinant genes into primary cultures. Hepatocytes were isolated from tissue of four different donors, plated in primary culture, and exposed to recombinant retroviruses expressing either the LacZ reporter gene or the cDNA for rabbit LDL receptor. The efficiency of gene transfer under optimal conditions, as determined by Southern blot analysis, varied from a maximum of one proviral copy per cell to a minimum of 0.1 proviral copy per cell. Cytochemical assays were used to detect expression of the recombinant derived proteins, E. coli β-galactosidase and rabbit LDL receptor. Hepatocytes transduced with the LDL receptor gene expressed levels of receptor protein that exceeded the normal endogenous levels. The ability to isolate and genetically modify human hepatocytes, as described in this report, is an important step towards the development of liver-directed gene therapies in humans.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45540/1/11188_2005_Article_BF01233625.pd
Association of kidney disease measures with risk of renal function worsening in patients with type 1 diabetes
Background: Albuminuria has been classically considered a marker of kidney damage progression in diabetic patients and it is routinely assessed to monitor kidney function. However, the role of a mild GFR reduction on the development of stage 653 CKD has been less explored in type 1 diabetes mellitus (T1DM) patients. Aim of the present study was to evaluate the prognostic role of kidney disease measures, namely albuminuria and reduced GFR, on the development of stage 653 CKD in a large cohort of patients affected by T1DM. Methods: A total of 4284 patients affected by T1DM followed-up at 76 diabetes centers participating to the Italian Association of Clinical Diabetologists (Associazione Medici Diabetologi, AMD) initiative constitutes the study population. Urinary albumin excretion (ACR) and estimated GFR (eGFR) were retrieved and analyzed. The incidence of stage 653 CKD (eGFR < 60 mL/min/1.73 m2) or eGFR reduction > 30% from baseline was evaluated. Results: The mean estimated GFR was 98 \ub1 17 mL/min/1.73m2 and the proportion of patients with albuminuria was 15.3% (n = 654) at baseline. About 8% (n = 337) of patients developed one of the two renal endpoints during the 4-year follow-up period. Age, albuminuria (micro or macro) and baseline eGFR < 90 ml/min/m2 were independent risk factors for stage 653 CKD and renal function worsening. When compared to patients with eGFR > 90 ml/min/1.73m2 and normoalbuminuria, those with albuminuria at baseline had a 1.69 greater risk of reaching stage 3 CKD, while patients with mild eGFR reduction (i.e. eGFR between 90 and 60 mL/min/1.73 m2) show a 3.81 greater risk that rose to 8.24 for those patients with albuminuria and mild eGFR reduction at baseline. Conclusions: Albuminuria and eGFR reduction represent independent risk factors for incident stage 653 CKD in T1DM patients. The simultaneous occurrence of reduced eGFR and albuminuria have a synergistic effect on renal function worsening
Association between multimorbidity and postoperative mortality in patients undergoing major surgery: a prospective study in 29 countries across Europe
BackgroundMultimorbidity poses a global challenge to healthcare delivery. This study aimed to describe the prevalence of multimorbidity, common disease combinations and outcomes in a contemporary cohort of patients undergoing major abdominal surgery.MethodsThis was a pre-planned analysis of a prospective, multicentre, international study investigating cardiovascular complications after major abdominal surgery conducted in 446 hospitals in 29 countries across Europe. The primary outcome was 30-day postoperative mortality. The secondary outcome measure was the incidence of complications within 30 days of surgery.ResultsOf 24,227 patients, 7006 (28.9%) had one long-term condition and 10,486 (43.9%) had multimorbidity (two or more long-term health conditions). The most common conditions were primary cancer (39.6%); hypertension (37.9%); chronic kidney disease (17.4%); and diabetes (15.4%). Patients with multimorbidity had a higher incidence of frailty compared with patients <= 1 long-term health condition. Mortality was higher in patients with one long-term health condition (adjusted odds ratio 1.93 (95%CI 1.16-3.23)) and multimorbidity (adjusted odds ratio 2.22 (95%CI 1.35-3.64)). Frailty and ASA physical status 3-5 mediated an estimated 31.7% of the 30-day mortality in patients with one long-term health condition (adjusted odds ratio 1.30 (95%CI 1.12-1.51)) and an estimated 36.9% of the 30-day mortality in patients with multimorbidity (adjusted odds ratio 1.61 (95%CI 1.36-1.91)). There was no improvement in 30-day mortality in patients with multimorbidity who received pre-operative medical assessment.ConclusionsMultimorbidity is common and outcomes are poor among surgical patients across Europe. Addressing multimorbidity in elective and emergency patients requires innovative strategies to account for frailty and disease control. The development of such strategies, that integrate care targeting whole surgical pathways to strengthen current systems, is urgently needed for multimorbid patients. Interventional trials are warranted to determine the effectiveness of targeted management for surgical patients with multimorbidity
- …
