83 research outputs found

    MEG alpha activity decrease reflects destabilization of multistable percepts

    Get PDF
    Multistable stimuli offer the possibility to investigate visual awareness, since they evoke spontaneous alternations between different perceptual interpretations of the same stimulus and, therefore, allow to dissociate perceptual from stimulus-driven mechanisms. In the present study, we used an ambiguous motion paradigm and compared endogenous reversals of perceived motion direction which occur spontaneously during constant ambiguous stimulation with exogenous reversals that were induced externally by changes of stimulation. Contrasting the two conditions allowed to investigate processes that trigger endogenous reversals, since the related activity should be absent in the exogenous reversal condition. We employed ambiguous dot patterns which can easily be transformed to present two stable motion directions in order to induce exogenous pattern reversals. Whole-head MEG was recorded from 10 subjects. We analyzed event-related fields (ERFs) and oscillatory activity in the alpha and gamma ranges. The results showed P300-like slow waves in response to both endogenous and exogenous reversals reflecting the conscious recognition of pattern reversals. Analyses in the gamma-band did not reveal any significant modulations. The alpha activity showed different time courses for endogenous and exogenous reversals. While the exogenous alpha activity decreased in temporal relation to the pattern reversal, the endogenous alpha activity displayed a continuous decrease starting in the time interval preceding the reversal. This time course of the endogenous alpha activity is consistent with a bottom-up approach to figure reversals, since it reflects a process of destabilization of the actual percept until a switch of visual awareness occurs

    Optical inter-site spin transfer probed by energy and spin-resolved transient absorption spectroscopy

    Get PDF
    Optically driven spin transport is the fastest and most efficient process to manipulate macroscopic magnetization as it does not rely on secondary mechanisms to dissipate angular momentum. In the present work, we show that such an optical inter-site spin transfer (OISTR) from Pt to Co emerges as a dominant mechanism governing the ultrafast magnetization dynamics of a CoPt alloy. To demonstrate this, we perform a joint theoretical and experimental investigation to determine the transient changes of the helicity dependent absorption in the extreme ultraviolet spectral range. We show that the helicity dependent absorption is directly related to changes of the transient spin-split density of states, allowing us to link the origin of OISTR to the available minority states above the Fermi level. This makes OISTR a general phenomenon in optical manipulation of multi-component magnetic systems

    Ultrastructural changes of the intracellular surfactant pool in a rat model of lung transplantation-related events

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ischemia/reperfusion (I/R) injury, involved in primary graft dysfunction following lung transplantation, leads to inactivation of intra-alveolar surfactant which facilitates injury of the blood-air barrier. The alveolar epithelial type II cells (AE2 cells) synthesize, store and secrete surfactant; thus, an intracellular surfactant pool stored in lamellar bodies (Lb) can be distinguished from the intra-alveolar surfactant pool. The aim of this study was to investigate ultrastructural alterations of the intracellular surfactant pool in a model, mimicking transplantation-related procedures including flush perfusion, cold ischemia and reperfusion combined with mechanical ventilation.</p> <p>Methods</p> <p>Using design-based stereology at the light and electron microscopic level, number, surface area and mean volume of AE2 cells as well as number, size and total volume of Lb were determined in a group subjected to transplantation-related procedures including both I/R injury and mechanical ventilation (I/R group) and a control group.</p> <p>Results</p> <p>After I/R injury, the mean number of Lb per AE2 cell was significantly reduced compared to the control group, accompanied by a significant increase in the luminal surface area per AE2 cell in the I/R group. This increase in the luminal surface area correlated with the decrease in surface area of Lb per AE2. The number-weighted mean volume of Lb in the I/R group showed a tendency to increase.</p> <p>Conclusion</p> <p>We suggest that in this animal model the reduction of the number of Lb per AE2 cell is most likely due to stimulated exocytosis of Lb into the alveolar space. The loss of Lb is partly compensated by an increased size of Lb thus maintaining total volume of Lb per AE2 cell and lung. This mechanism counteracts at least in part the inactivation of the intra-alveolar surfactant.</p

    Active behaviour during early development shapes glucocorticoid reactivity

    Get PDF
    TGlucocorticoids are the final effectors of the stress axis, with numerous targets in the central nervous system and the periphery. They are essential for adaptation, yet currently it is unclear how early life events program the glucocorticoid response to stress. Here we provide evidence that involuntary swimming at early developmental stages can reconfigure the cortisol response to homotypic and heterotypic stress in larval zebrafish (Danio rerio), also reducing startle reactivity and increasing spontaneous activity as well as energy efficiency during active behaviour. Collectively, these data identify a role of the genetically malleable zebrafish for linking early life stress with glucocorticoid function in later life

    Exogenous surfactant application in a rat lung ischemia reperfusion injury model: effects on edema formation and alveolar type II cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prophylactic exogenous surfactant therapy is a promising way to attenuate the ischemia and reperfusion (I/R) injury associated with lung transplantation and thereby to decrease the clinical occurrence of acute lung injury and acute respiratory distress syndrome. However, there is little information on the mode by which exogenous surfactant attenuates I/R injury of the lung. We hypothesized that exogenous surfactant may act by limiting pulmonary edema formation and by enhancing alveolar type II cell and lamellar body preservation. Therefore, we investigated the effect of exogenous surfactant therapy on the formation of pulmonary edema in different lung compartments and on the ultrastructure of the surfactant producing alveolar epithelial type II cells.</p> <p>Methods</p> <p>Rats were randomly assigned to a control, Celsior (CE) or Celsior + surfactant (CE+S) group (n = 5 each). In both Celsior groups, the lungs were flush-perfused with Celsior and subsequently exposed to 4 h of extracorporeal ischemia at 4°C and 50 min of reperfusion at 37°C. The CE+S group received an intratracheal bolus of a modified natural bovine surfactant at a dosage of 50 mg/kg body weight before flush perfusion. After reperfusion (Celsior groups) or immediately after sacrifice (Control), the lungs were fixed by vascular perfusion and processed for light and electron microscopy. Stereology was used to quantify edematous changes as well as alterations of the alveolar epithelial type II cells.</p> <p>Results</p> <p>Surfactant treatment decreased the intraalveolar edema formation (mean (coefficient of variation): CE: 160 mm<sup>3 </sup>(0.61) vs. CE+S: 4 mm<sup>3 </sup>(0.75); p < 0.05) and the development of atelectases (CE: 342 mm<sup>3 </sup>(0.90) vs. CE+S: 0 mm<sup>3</sup>; p < 0.05) but led to a higher degree of peribronchovascular edema (CE: 89 mm<sup>3 </sup>(0.39) vs. CE+S: 268 mm<sup>3 </sup>(0.43); p < 0.05). Alveolar type II cells were similarly swollen in CE (423 μm<sup>3</sup>(0.10)) and CE+S (481 μm<sup>3</sup>(0.10)) compared with controls (323 μm<sup>3</sup>(0.07); p < 0.05 vs. CE and CE+S). The number of lamellar bodies was increased and the mean lamellar body volume was decreased in both CE groups compared with the control group (p < 0.05).</p> <p>Conclusion</p> <p>Intratracheal surfactant application before I/R significantly reduces the intraalveolar edema formation and development of atelectases but leads to an increased development of peribronchovascular edema. Morphological changes of alveolar type II cells due to I/R are not affected by surfactant treatment. The beneficial effects of exogenous surfactant therapy are related to the intraalveolar activity of the exogenous surfactant.</p

    Application concepts for ultrafast laser induced skyrmion creation and annihilation

    Get PDF
    Magnetic skyrmions can be created and annihilated in ferromagnetic multilayers using single femtosecond infrared laser pulses above a material dependent fluence threshold. From the perspective of applications, optical control of skyrmions offers a route to a faster and, potentially, more energy efficient new class of information technology devices. Here, we investigate laser induced skyrmion generation in two different materials, mapping out the dependence of the process on the applied field and the laser fluence. We observe that sample properties like strength of the Dzyaloshinskii Moriya interaction and pinning do not considerably influence the initial step of optical creation. In contrast, the number of skyrmions created can be directly and robustly controlled via the applied field and the laser fluence. Based on our findings, we propose concepts for applications, such as all optical writing and deletion, an ultrafast skyrmion reshuffling device for probabilistic computing, and a combined optical and spin orbit torque controlled racetrac

    The relationship between basal and acute HPA axis activity and aggressive behavior in adults

    Get PDF
    The hypothalamic–pituitary–adrenal (HPA) axis seems to play a major role in the development, elicitation, and enhancement of aggressive behavior in animals. Increasing evidence suggests that this is also true for humans. However, most human research on the role of the HPA axis in aggression has been focusing on highly aggressive children and adolescent clinical samples. Here, we report on a study of the role of basal and acute HPA axis activity in a sample of 20 healthy male and female adults. We used the Taylor Aggression Paradigm to induce and measure aggression. We assessed the cortisol awakening response as a trait measure of basal HPA axis activity. Salivary free cortisol measures for the cortisol awakening response were obtained on three consecutive weekdays immediately following awakening and 30, 45, and 60 min after. Half of the subjects were provoked with the Taylor Aggression Paradigm to behave aggressively; the other half was not provoked. Acute HPA axis activity was measured four times, once before and three times after the induction of aggression. Basal cortisol levels were significantly and negatively related to aggressive behavior in the provoked group and explained 67% of the behavioral variance. Cortisol levels following the induction of aggression were significantly higher in the provoked group when baseline levels were taken into account. The data implicate that the HPA axis is not only relevant to the expression of aggressive behavior in clinical groups, but also to a large extent in healthy ones

    Bioreactors as engineering support to treat cardiac muscle and vascular disease

    Get PDF
    Cardiovascular disease is the leading cause of morbidity and mortality in the Western World. The inability of fully differentiated, load-bearing cardiovascular tissues to in vivo regenerate and the limitations of the current treatment therapies greatly motivate the efforts of cardiovascular tissue engineering to become an effective clinical strategy for injured heart and vessels. For the effective production of organized and functional cardiovascular engineered constructs in vitro, a suitable dynamic environment is essential, and can be achieved and maintained within bioreactors. Bioreactors are technological devices that, while monitoring and controlling the culture environment and stimulating the construct, attempt to mimic the physiological milieu. In this study, a review of the current state of the art of bioreactor solutions for cardiovascular tissue engineering is presented, with emphasis on bioreactors and biophysical stimuli adopted for investigating the mechanisms influencing cardiovascular tissue development, and for eventually generating suitable cardiovascular tissue replacements
    corecore