2,055 research outputs found
Application of ERTS-1 imagery to state wide land information system in Minnesota
There are no author-identified significant results in this report
Toolbox for analyzing finite two-state trajectories
In many experiments, the aim is to deduce an underlying multi-substate on-off
kinetic scheme (KS) from the statistical properties of a two-state trajectory.
However, the mapping of a KS into a two-state trajectory leads to the loss of
information about the KS, and so, in many cases, more than one KS can be
associated with the data. We recently showed that the optimal way to solve this
problem is to use canonical forms of reduced dimensions (RD). RD forms are
on-off networks with connections only between substates of different states,
where the connections can have non-exponential waiting time probability density
functions (WT-PDFs). In theory, only a single RD form can be associated with
the data. To utilize RD forms in the analysis of the data, a RD form should be
associated with the data. Here, we give a toolbox for building a RD form from a
finite two-state trajectory. The methods in the toolbox are based on known
statistical methods in data analysis, combined with statistical methods and
numerical algorithms designed specifically for the current problem. Our toolbox
is self-contained - it builds a mechanism based only on the information it
extracts from the data, and its implementation on the data is fast (analyzing a
10^6 cycle trajectory from a thirty-parameter mechanism takes a couple of hours
on a PC with a 2.66 GHz processor). The toolbox is automated and is freely
available for academic research upon electronic request
Methods for Detecting and Quantifying Viable Bacterial Endo-Spores
Methods and systems for detecting viable bacterial endospores in a sample and related methods to quantify viable bacterial endospores in a sample
A LEKID-based CMB instrument design for large-scale observations in Greenland
We present the results of a feasibility study, which examined deployment of a
ground-based millimeter-wave polarimeter, tailored for observing the cosmic
microwave background (CMB), to Isi Station in Greenland. The instrument for
this study is based on lumped-element kinetic inductance detectors (LEKIDs) and
an F/2.4 catoptric, crossed-Dragone telescope with a 500 mm aperture. The
telescope is mounted inside the receiver and cooled to K by a
closed-cycle He refrigerator to reduce background loading on the detectors.
Linearly polarized signals from the sky are modulated with a metal-mesh
half-wave plate that is rotated at the aperture stop of the telescope with a
hollow-shaft motor based on a superconducting magnetic bearing. The modular
detector array design includes at least 2300 LEKIDs, and it can be configured
for spectral bands centered on 150~GHz or greater. Our study considered
configurations for observing in spectral bands centered on 150, 210 and
267~GHz. The entire polarimeter is mounted on a commercial precision rotary air
bearing, which allows fast azimuth scan speeds with negligible vibration and
mechanical wear over time. A slip ring provides power to the instrument,
enabling circular scans (360 degrees of continuous rotation). This mount, when
combined with sky rotation and the latitude of the observation site, produces a
hypotrochoid scan pattern, which yields excellent cross-linking and enables
34\% of the sky to be observed using a range of constant elevation scans. This
scan pattern and sky coverage combined with the beam size (15~arcmin at
150~GHz) makes the instrument sensitive to in the angular
power spectra
Using sea cucumbers to illustrate the basics of zoological nomenclature
In addition to a brief account of the need to have unique and unambiguous scientific names for taxa, this paper, annotated with examples of sea cucumbers, explains the basics of zoological nomenclature. In doing so it aims to reduce the confusion that exists among various breeds of end-users of taxonomists who may not fully understand the seemingly arbitrary and often volatile nature of scientific names. This paper also aims to provide teachers and students with a comprehensible account of the basic principles of zoological nomenclature
The Detector System for the Stratospheric Kinetic Inductance Polarimeter (SKIP)
The Stratospheric Kinetic Inductance Polarimeter (SKIP) is a proposed
balloon-borne experiment designed to study the cosmic microwave background, the
cosmic infrared background and Galactic dust emission by observing 1133 square
degrees of sky in the Northern Hemisphere with launches from Kiruna, Sweden.
The instrument contains 2317 single-polarization, horn-coupled, aluminum
lumped-element kinetic inductance detectors (LEKID). The LEKIDs will be
maintained at 100 mK with an adiabatic demagnetization refrigerator. The
polarimeter operates in two configurations, one sensitive to a spectral band
centered on 150 GHz and the other sensitive to 260 and 350 GHz bands. The
detector readout system is based on the ROACH-1 board, and the detectors will
be biased below 300 MHz. The detector array is fed by an F/2.4 crossed-Dragone
telescope with a 500 mm aperture yielding a 15 arcmin FWHM beam at 150 GHz. To
minimize detector loading and maximize sensitivity, the entire optical system
will be cooled to 1 K. Linearly polarized sky signals will be modulated with a
metal-mesh half-wave plate that is mounted at the telescope aperture and
rotated by a superconducting magnetic bearing. The observation program consists
of at least two, five-day flights beginning with the 150 GHz observations.Comment: J Low Temp Phys DOI 10.1007/s10909-013-1014-3 The final publication
is available at link.springer.co
Tyre model development using co-simulation technique for helicopter ground operation
This paper describes the development of a new aircraft tyre model applied using a co-simulation approach for the multibody dynamic simulation of helicopter ground vehicle dynamics. The new tyre model is presented using a point follower approach that makes a novel contribution to this area by uniquely combining elements of two existing tyre models used by the aircraft industry, namely the NASA R64 model developed by Smiley and Horne and the Engineering Sciences Data Unit (ESDU) Mitchell tyre model. Before the tyre model was used with a full helicopter model, a virtual tyre test rig was used to examine the tyre and to predict the tyre forces and moments for a range of tyre states. The paper concludes by describing the successful application of the new tyre model with a full helicopter model and the simulation of representative landing, take-off and runway taxiing manoeuvres. The predictive capability of the model is demonstrated to show the open-loop ground vehicle dynamics response of the helicopter and also the ground load predictive capability for the distribution of loads through the tyres, wheels and landing gears
The prevalence and incidence of mental ill-health in adults with autism and intellectual disabilities
The prevalence, and incidence, of mental ill-health in adults with intellectual disabilities and autism were compared with the whole population with intellectual disabilities, and with controls, matched individually for age, gender, ability-level, and Down syndrome. Although the adults with autism had a higher point prevalence of problem behaviours compared with the whole adult population with intellectual disabilities, compared with individually matched controls there was no difference in prevalence, or incidence of either problem behaviours or other mental ill-health. Adults with autism who had problem behaviours were less likely to recover over a two-year period than were their matched controls. Apparent differences in rates of mental ill-health are accounted for by factors other than autism, including Down syndrome and ability level
Aristotle’s assertoric syllogistic and modern relevance logic
This paper sets out to evaluate the claim that Aristotle’s Assertoric Syllogistic is a relevance logic or shows significant similarities with it. I prepare the grounds for a meaningful comparison by extracting the notion of relevance employed in the most influential work on modern relevance logic, Anderson and Belnap’s Entailment. This notion is characterized by two conditions imposed on the concept of validity: first, that some meaning content is shared between the premises and the conclusion, and second, that the premises of a proof are actually used to derive the conclusion. Turning to Aristotle’s Prior Analytics, I argue that there is evidence that Aristotle’s Assertoric Syllogistic satisfies both conditions. Moreover, Aristotle at one point explicitly addresses the potential harmfulness of syllogisms with unused premises. Here, I argue that Aristotle’s analysis allows for a rejection of such syllogisms on formal grounds established in the foregoing parts of the Prior Analytics. In a final section I consider the view that Aristotle distinguished between validity on the one hand and syllogistic validity on the other. Following this line of reasoning, Aristotle’s logic might not be a relevance logic, since relevance is part of syllogistic validity and not, as modern relevance logic demands, of general validity. I argue that the reasons to reject this view are more compelling than the reasons to accept it and that we can, cautiously, uphold the result that Aristotle’s logic is a relevance logic
- …
