brought to you by 🌡 CORE

Fungal Genetics Reports

Volume 47 Article 18

Identification of a gene encoding GMP synthetase from a Neurospora crassa cDNA library by bacterial complementation

J A. Smiley Youngstown State University

D K. Asch Youngstown State University

Follow this and additional works at: https://newprairiepress.org/fgr

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 License.

Recommended Citation

Smiley, J. A., and D.K. Asch (2000) "Identification of a gene encoding GMP synthetase from a Neurospora crassa cDNA library by bacterial complementation," *Fungal Genetics Reports*: Vol. 47, Article 18. https://doi.org/10.4148/1941-4765.1214

This Regular Paper is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Fungal Genetics Reports by an authorized administrator of New Prairie Press. For more information, please contact cads@k-state.edu.

Identification of a gene encoding GMP synthetase from a Neurospora crassa cDNA library by bacterial complementation

Abstract

We report the isolation and identification of a gene encoding GMP synthetase from a *Neurospora crassa* cDNA library. Phage infection of the purine-requiring *Escherichia coli* strain SØ3834 using the NO₃-induced cDNA phage library from the Fungal Genetics Stock Center resulted in colonies able to grow on minimal media with no added purine source. A plasmid, termed pGMPS1, was isolated from one of these colonies and shown to reproducibly support growth of strain SØ3834 in the absence of purines in the media. Identification of this gene as one encoding GMP synthetase is confirmed by DNA sequencing and comparison to the known *guaA* gene from yeast.

Identification of a gene encoding GMP synthetase from a Neurospora crassa cDNA library by bacterial complementation

Jeffrey A. Smiley¹ and David K. Asch². Departments of Chemistry¹ and Biological Sciences², Youngstown State University, Youngstown, OH 44555

We report the isolation and identification of a gene encoding GMP synthetase from a Neurospora crassa cDNA library. Phage infection of the purine-requiring Escherichia coli strain SØ3834 using the NO₃ induced cDNA phage library from the Fungal Genetics Stock Center resulted in colonies able to grow on minimal media with no added purine source. A plasmid, termed pGMPS1, was isolated from one of these colonies and shown to reproducibly support growth of strain SØ3834 in the absence of purines in the media. Identification of this gene as one encoding GMP synthetase is confirmed by DNA sequencing and comparison to the known guaA gene from yeast.

Nucleotide biosynthetic enzymes are common targets for anti-nucleic acid drug therapy, and deficiencies of the corresponding genes in humans are implicated in a number of inherited metabolic disorders. GMP synthetase (EC 6.3.5.2) has implications in anticancer and immunosuppressive therapies; additionally, this enzyme is used industrially in the semi-enzymatic synthesis of GMP (Fujio et al. 1997, Bioscience, Biotechnology, and Biochemistry 61: 840-845). The enzyme is a member of the amidotransferase family, which utilizes glutamine hydrolysis as a source of ammonia for a subsequent enzymatic step, and catalyzes the replacement of O2 in XMP with an amino group to yield GMP.

To extend the collection of GMP synthetase genes from different organisms, we attempted isolation of the gene from Neurospora crassa using bacterial complementation. The auxotrophic Escherichia coli strain, SØ3834 (Chang et al. 1991, Biochemistry 30: 2273-2280), lacks both genes for GMP synthetase (guaA) and adenosine deaminase (add), and requires a purine source that can be metabolized to GMP for growth. In guaA add strains, the purine source can be 2,6-diaminopurine, since this compound can be enzymatically ribosylated and subsequently deaminated by adenosine deaminase to guanosine, but in SØ3834, 2,6-diaminopurine is incapable of providing the purine requirement. Thus, colonies in the complementation screen that arise on media containing 2,6-diaminopurine could contain either the guaA or add genes, but those that arise on purine-free media could only contain guaA.

From colonies arising in a complementation screen of about 10⁵ phage [NO₃] induced cDNA phage library, Fungal Genetics Stock Center; Fungal Genetics Newsletter, 45 (Supplement), 8], one colony yielded plasmid DNA from an alkaline lysis preparation that, when reinserted into the host strain, provided the ability to grow on purine-free media. This plasmid was presumed to contain the GMP synthetase gene and was designated pGMPS1. Sequencing of the inserted region within the vector was carried out at the Automated DNA Sequencing Facility, University of North Carolina, Chapel Hill, using the M13 (-20) primer and primers designed from newly acquired sequence information. An open reading frame of 1629 nucleotides was identified; when translated into the amino acid sequence, a high degree of similarity was found with the yeast GMP synthetase gene (duJardin et al. 1994, Gene 139:127-132). Of the 543 amino acids from the deduced sequence, 354 (65%) have identical counterparts in the yeast sequence (Figure 1). The high degree of sequence similarity with the yeast GMP synthetase gene and the ability of the gene to support growth of E. coli strain SØ3834 in the absence of purines confirm the identification of a GMP synthetase gene from an N. crassa library.

We thank Dr. Per Nygaard, Department of Biological Chemistry, University of Copenhagen, for providing E. coli strain SØ3834. Contributions to this work from Maria T. Kovach and Jennifer R. Shook are gratefully acknowledged.

Figure 1. Amino acid sequence comparison of GMP synthetases. Yeast sequence is shown in light type, sequence from N. crassa is bold. Vertical dashes between sequences indicate identical amino acids.

11.1 1.1	SNMFDTILVL TKAFDTILTL	111111 111	111 11 11	THILL II	
1 1111	ILSGGPYSVY	11111	1.1.111111	HILITLI	
1) 1	DKREYGPATL VHREYGHSNL	1 11	11 11	11111111	
1 11 1 1	IATSDNSPYC VAVSDNSEYA	1 1 11111	1 11111111	1 1 1111	
11111	NWTMENFIDT	11 111 113	1 1 1111	THEFT	
11 1111111	HAILVDNGVL WAVLVNNGVM	11.1.1	1 1111	1 1 1 1 1 1	
SKLKGVTDPE EGLKGLHDPE	KKRKIIGNTF	IHVFEREAEK IDVFEAEAQK	IKP KDGK	EIQFLLQG GTKIGFFLQG	
111111111	SFKGPSQTIK SFKGPSATIK	11111111111	1 1	11111 1 11	
111 11 11	IPHOLVWRHP	11111111	111111111111111111111111111111111111	J11 11 1 1	
11 11111	QISQAFACLL QISQAYAAVD	1 111111		41 41114	
	LKKVASRIVN				525
AEAFNFPWDF	LORVMNRIVN	EVNGVCRVTY	DITSKPPGTI	ELE	543