7,857 research outputs found
Secondary electron emission from sodium chloride, glass and aluminum oxide at various temperature
The method of single impulses was used to measure the coefficients of the secondary electronic emission for 2 types of Al2O2, monocrystalline NaCl and glass at different temperatures and for different values of the energy of the primary electrons. The value of the secondary electron emission does not depend upon temperature. The effect of a gas film on the value of the secondary electron emission was detected
Using tasks to explore teacher knowledge in situation-specific contexts
This article was published in the journal, Journal of Mathematics Teacher Education [© Springer] and the original publication is available at www.springerlink.comResearch often reports an overt discrepancy between theoretically/out-of context expressed teacher beliefs about mathematics and pedagogy and actual practice. In order to explore teacher knowledge in situation-specific contexts we have engaged mathematics teachers with classroom scenarios (Tasks) which: are hypothetical but grounded on learning and teaching issues that previous research and experience have highlighted as seminal; are likely to occur in actual practice; have purpose and utility; and, can be used both in (pre- and in-service) teacher education and research through generating access to teachers’ views and intended practices. The Tasks have the following structure: reflecting upon the learning objectives within a mathematical problem (and solving it); examining a flawed (fictional) student solution; and, describing, in writing, feedback to the student. Here we draw on the written responses to one Task (which involved reflecting on solutions of x+x−1=0 of 53 Greek in-service mathematics teachers in order to demonstrate the range of teacher knowledge (mathematical, didactical and pedagogical) that engagement with these tasks allows us to explore
Quenching of dynamic nuclear polarization by spin-orbit coupling in GaAs quantum dots
The central-spin problem, in which an electron spin interacts with a nuclear
spin bath, is a widely studied model of quantum decoherence. Dynamic nuclear
polarization (DNP) occurs in central spin systems when electronic angular
momentum is transferred to nuclear spins and is exploited in spin-based quantum
information processing for coherent electron and nuclear spin control. However,
the mechanisms limiting DNP remain only partially understood. Here, we show
that spin-orbit coupling quenches DNP in a GaAs double quantum dot, even though
spin-orbit coupling in GaAs is weak. Using Landau-Zener sweeps, we measure the
dependence of the electron spin-flip probability on the strength and direction
of in-plane magnetic field, allowing us to distinguish effects of the
spin-orbit and hyperfine interactions. To confirm our interpretation, we
measure high-bandwidth correlations in the electron spin-flip probability and
attain results consistent with a significant spin-orbit contribution. We
observe that DNP is quenched when the spin-orbit component exceeds the
hyperfine, in agreement with a theoretical model. Our results shed new light on
the surprising competition between the spin-orbit and hyperfine interactions in
central-spin systems.Comment: 5+12 pages, 9 figure
Zero bias anomaly out of equilibrium
The non-equilibrium zero bias anomaly (ZBA) in the tunneling density of
states of a diffusive metallic film is studied. An effective action describing
virtual fluctuations out-of-equilibrium is derived. The singular behavior of
the equilibrium ZBA is smoothed out by real processes of inelastic scattering.Comment: 4 page
Electrometry Using Coherent Exchange Oscillations in a Singlet-Triplet-Qubit
Two level systems that can be reliably controlled and measured hold promise
in both metrology and as qubits for quantum information science (QIS). When
prepared in a superposition of two states and allowed to evolve freely, the
state of the system precesses with a frequency proportional to the splitting
between the states. In QIS,this precession forms the basis for universal
control of the qubit,and in metrology the frequency of the precession provides
a sensitive measurement of the splitting. However, on a timescale of the
coherence time, , the qubit loses its quantum information due to
interactions with its noisy environment, causing qubit oscillations to decay
and setting a limit on the fidelity of quantum control and the precision of
qubit-based measurements. Understanding how the qubit couples to its
environment and the dynamics of the noise in the environment are therefore key
to effective QIS experiments and metrology. Here we show measurements of the
level splitting and dephasing due to voltage noise of a GaAs singlet-triplet
qubit during exchange oscillations. Using free evolution and Hahn echo
experiments we probe the low frequency and high frequency environmental
fluctuations, respectively. The measured fluctuations at high frequencies are
small, allowing the qubit to be used as a charge sensor with a sensitivity of
, two orders of magnitude better than
the quantum limit for an RF single electron transistor (RF-SET). We find that
the dephasing is due to non-Markovian voltage fluctuations in both regimes and
exhibits an unexpected temperature dependence. Based on these measurements we
provide recommendations for improving in future experiments, allowing for
higher fidelity operations and improved charge sensitivity
Differential electrophysiological response during rest, self-referential, and non-self-referential tasks in human posteromedial cortex
The electrophysiological basis for higher brain activity during rest and internally directed cognition within the human default mode network
(DMN) remains largely unknown. Here we use intracranial recordings in
the human posteromedial cortex (PMC), a core node within the DMN,
during conditions of cued rest, autobiographical judgments, and
arithmetic processing. We found a heterogeneous profile of PMC
responses in functional, spatial, and temporal domains. Although the
majority of PMC sites showed increased broad gamma band activity
(30-180 Hz) during rest, some PMC sites, proximal to the retrosplenial
cortex, responded selectively to autobiographical stimuli. However, no
site responded to both conditions, even though they were located within
the boundaries of the DMN identified with resting-state functional
imaging and similarly deactivated during arithmetic processing. These
findings, which provide electrophysiological evidence for heterogeneity
within the core of the DMN, will have important implications for
neuroimaging studies of the DMN
Why 'scaffolding' is the wrong metaphor : the cognitive usefulness of mathematical representations.
The metaphor of scaffolding has become current in discussions of the cognitive help we get from artefacts, environmental affordances and each other. Consideration of mathematical tools and representations indicates that in these cases at least (and plausibly for others), scaffolding is the wrong picture, because scaffolding in good order is immobile, temporary and crude. Mathematical representations can be manipulated, are not temporary structures to aid development, and are refined. Reflection on examples from elementary algebra indicates that Menary is on the right track with his ‘enculturation’ view of mathematical cognition. Moreover, these examples allow us to elaborate his remarks on the uniqueness of mathematical representations and their role in the emergence of new thoughts.Peer reviewe
Entry in the ADHD drugs market: Welfare impact of generics and me-toos
Recent decades have seen a growth in treatments for attention deficit hyperactivity disorder (ADHD) including many branded and generic drugs. In the early 2000's, new drug entry dramatically altered market shares. We estimate a demand system for ADHD drugs and assess the welfare impact of new drugs. We find that entry induced large welfare gains by reducing prices of substitute drugs, and by providing alternative delivery mechanisms for existing molecules. Our results suggest that the success of follow-on patented drugs may come from unanticipated innovations like delivery mechanisms, a factor ignored by proposals to retard new follow-on drug approvals
- …
